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Summary 
 

Once thought to be a curiosity, it has now become increasingly recognized that beneficial 
symbioses between animals and microbes are common and wide-spread in nature. Animal-
microbe interactions had mostly been studied from a medical perspective. However, thanks to 
major advances in sequencing technology that allowed the genomic study of non-cultivable 
microorganisms, it has become apparent that not only most (if not all) animals are colonized by 
microbes, but that the majority of these microbes is harmless or even beneficial to the host 
animal and often contributes integral functions to the biology of these animals. In some cases, 
animals form such highly intimate associations with bacteria that the association becomes 
obligate for their survival. 

One such example is the obligate symbiosis between marine gutless oligochaete worms 
(Annelida, Phallodrilinae) and their chemosynthetic bacterial symbionts. Over the course of 
evolution, gutless oligochaetes have lost their entire digestive system, including mouth, gut, and 
anus, as well as their excretory organs, becoming entirely dependent on their symbionts to 
provide all necessary nutrients and to remove the waste products of the host. Each gutless 
oligochaete host harbors its own highly species-specific consortium of bacteria.  

Among the gutless oligochaetes, the model species Olavius algarvensis is one of the best 
studied. This Mediterranean species lives in symbiotic association with multiple bacterial 
phylotypes, including two gammaproteobacterial sulfur-oxidizers (OalgG1 and OalgG3), two 
deltaproteobacterial sulfate-reducers (OalgD1, OalgD4) and a spirochaete symbiont of unknown 
function (OalgS1). Although this species is one of the best studied gutless oligochaetes, many 
aspects of this symbiosis remain unresolved, in particular with regard to the evolutionary history 
of host and symbionts, their population level diversity, the transmission of symbionts from 
parent to offspring, the molecular mechanisms that enable the symbiosis to be functional and 
maintained across all life stages and across host generations, and the function of the spirochaete 
symbiont within the symbiosis.  

In the first part of this thesis (chapter 2), I used direct COI and 16S rRNA gene 
sequencing together with high-throughput metagenomic sequencing to investigate the 
population structure of O. algarvensis and its symbionts in order to gain insights into the recent 
evolutionary history of this symbiosis and to study the diversity within the symbiosis on an intra-
specific level. I show that the Sant’ Andrea population of O. algarvensis consists of two 
haplotypes and that each haplotype is specifically associated with its own unique strain of 
OalgG1. By constructing phylogenetic trees from single nucleotide polymorphism (SNP) data, I 
could show that the phylogenies of the two host haplotypes and their OalgG1 symbiont 
phylotypes were highly congruent, strongly suggesting maternal vertical transmission. The two 
OalgG1 strains also showed divergent evolution in their gene content, since several genes were 
unique to either of the two phylotypes. With respect to the other symbionts I observed 
decreasing or absent congruence with host phylogeny, suggesting horizontal or mixed-mode 
transmission, and varying degrees of sequence divergence, suggesting different levels of 
specificity for these symbionts. Two novel deltaproteobacterial symbiont phylotypes were 
identified through metagenomic sequencing, and near-complete genomes of them, as well as 
the elusive spirochaete symbiont, were obtained. 

In the second part of this thesis I investigated the genome of the spirochaetal symbiont 
with respect to the role it might play in this symbiosis, focusing on its metabolic capabilities and 
its repertoire of genes to interact with the host. I found that the spirochaete is likely a 
mutualistic symbiont, fermenting environmentally derived carbohydrates to different short 
chain fatty acids like acetate and to hydrogen. Since the fermentation end products of the 
spirochaete are known substrates for the deltaproteobacterial symbionts, I propose that the 
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interaction between these symbionts is syntrophic and positively contributes to the carbon and 
energy budget of the whole symbiosis. 

In the third part of my thesis (chapter 4), using transcriptomic and proteomic analyses, I 
investigated the molecular mechanisms that allow the host to successfully live with symbionts of 
greatly differing metabolic demands (anoxic vs. oxic, sulfide producing, carbon monoxide 
requiring) and of very different phylogenetic origin. I found that the host expresses digestive 
enzymes, even in the absence of a gut, hemoglobin that is predicted to be able to bind 
symbiont-produced sulfide, and extremely high expression of hemerythrin, a protein insensitive 
to carbon monoxide. Both respiratory proteins aid the host in avoiding noxious gases that are 
required by the symbionts. In addition, I established an inventory of immune-related genes that 
could enable host-symbiont molecular interactions and symbiosis maintenance.  

 
The work of this thesis provides insight into the recent evolution of the host and its 

symbionts at the population level, the likely transmission modes of each symbiont, and the first 
functional characterization of the spirochaete symbiont. It furthermore establishes a database of 
improved or completely new symbiont genomes and host genes for future research of symbiont 
functions and the molecular mechanisms that allow this symbiosis to be maintained.  
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Zusammenfassung 
 

Gegenseitig nützliche Symbiosen zwischen Tieren und Mikroorganismen wurden einst als 
sonderbare Einzelfälle betrachtet, da Interaktionen zwischen Tieren und Mikroben in erster Linie 
aus dem Blickwinkel der Medizin betrachtet wurden. Dank der Entwicklung neuer 
Sequenziertechniken, die es erstmals ermöglichten die Genome von Organismen zu untersuchen, 
die nicht kultiviert werden können, wurde schnell offenbar, dass die meisten (falls nicht sogar 
alle) Tiere von Mikroorganismen besiedelt werden, die harmlos oder sogar von Vorteil für das 
Wirtstier sind, und oft wesentliche Funktionen in der Biologie dieser Tiere erfüllen. In einigen 
Fällen sind die Assoziationen so eng, dass sie für das Wirtstier obligat, d.h. unverzichtbar, für das 
Überleben werden. 
 Ein solches Beispiel stellt die obligate Symbiose zwischen marinen darmlosen 
Oligochaeten (Annelida, Phallodrilinae) und ihren chemosynthetischen Bakterien dar. Im Laufe 
der Evolution haben diese Tiere ihren gesamten Verdauuungstrakt, inklusive Mund, Darm und 
Anus, sowie ihre Exktretionsorgane, die Nephridien, verloren, wodurch sie völlig abhängig von 
der Aktivität ihrer Symbionten wurden. Diese Symbionten stellen sämtliche benötigten 
Nährstoffe bereit, und entsorgen auch die Abfallprodukte des Wirtsstoffwechsels. Jede Spezies 
von darmlosen Oligochaeten besitzt ihr eigenes, arten-spezifisches Konsortium von bakteriellen 
Symbionten. 
 Von allen darmlosen Oligochaetenarten ist die Mittelmeer-Art Olavius algarvensis am 
besten untersucht. Die Art beherbergt zwei verschiedene Schwefel-oxidierende 
gammaproteobakterielle Symbionten (OalgG1 und OalgG3), zwei Sulfat-reduzierende 
deltaproteobakterielle Symbionten (OalgD1 und OalgD4), und einen Spirochaeten-Symbionten 
(OalgS1), dessen Funktion unbekannt ist. Obwohl diese Art zu den am besten untersuchten 
gehört, ist vieles über diese Symbiose noch unklar, vor allem in Bezug auf die 
Evolutionsgeschichte von Wirt und Symbionten, ihre Diversität auf Populationsebene, die Art der 
Weitergabe von Symbionten von Generation zu Generation, die molekularen Mechanismen, die 
den Fortbestand der Symbiose ermöglichen, und die Funktion des Spirochaten innerhalb der 
Symbiose. 
 Im ersten Teil meiner Arbeit (Kapitel 2), untersuchte ich die Populationsstruktur von 
O. algarvensis und seinen Symbionten mit PCR, Markergen Sequenzierung und 
metagenomischen „high-throughput“ Sequenzierungen um die jüngste Evolutionsgeschichte 
dieser Symbiose nachzuvollziehen und um die genetische Diversität innerhalb der Art näher zu 
untersuchen. Ich konnte zeigen, dass die Sant‘ Andrea O. algarvensis Population aus zwei 
unterschiedlichen Haplotypen besteht, die jeweils ihren eigenen OalgG1 Phylotypen besitzen. 
Mit Hilfe von phylogenetischen SNP (single nucleotide polymorphism) Bäumen konnte ich zeigen, 
dass die Phylogenie zwischen diesen Symbionten und ihrem Wirt kongruent ist, und damit einen 
starken Hinweis darauf liefert, dass dieser Symbiont maternal und vertikal in die nächste 
Generation transmittiert wird. Zusätzlich unterschieden sich die OalgG1 Genome auch in ihrer 
Genzusammensetzung, da einige Gene nur exclusiv in entweder dem einen, oder anderen 
OalgG1 Phylotypen vorkamen. Die anderen Symbionten zeigten nur eine abgeschwächte oder 
gar keine Kongruenz mit der Wirtsphylogenie, was darauf hinweist, dass diese Symbionten 
horizontal, oder kombiniert mit vertikaler Transmission (mixed-mode) vererbt werden. 
Unterschiedliche Grade von Sequenzdiversität lieferten außerdem Hinweise darauf, dass diese 
Symbionten mit unterschiedlicher Spezifität aufgenommen werden. Zwei völlig neue 
Symbionten-Phylotypen wurden ebenfalls identifiziert, und sowohl ihre nahezu kompletten 
Genome, als auch das Genom des Spirochaeten, konnten assembliert werden. 
 Im zweiten Teil dieser Arbeit (Kapitel 3) untersuchte ich das Spirochaeten-Genom im 
Hinblick auf seine potenzielle Funktion innerhalb der Symbiose, wobei mein Fokus auf den 
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enkodierten Stoffwechselwegen und Genen, die eine Interaktion mit dem Wirt erlauben, lag. Die 
Analyse ergab, dass dieser Symbiont höchstwahrscheinlich nützlich für den Wirt ist, in dem er 
Kohlenhydrate aus der Umwelt aufnimmt und zu Produkten wie Acetat und molekularem 
Wasserstoff fermentiert, welche von den deltaproteobakteriellen Symbionten als Substrat 
verwendet werden können. D.h. der Spirochaet steht in einem mutualistischen, syntrophen 
Verhältnis zu den deltaproteobakteriellen Symbionten, und trägt insgesamt positiv zur 
Kohlenstoff- und Energiebilanz der Symbiose bei. 
 Im dritten Teil meiner Arbeit (Kapitel 4) widmete ich mich den molekularen 
Mechanismen, die es O. algarvensis erlauben, mit einer so metabolisch (oxisch vs. anoxisch, 
Sulfid-produzierend, und Kohlenstoffmonoxid-oxidierend) und phylgenetisch diversen 
Symbiontengemeinschaft zu leben. Ich fand heraus, dass der Wirt verschiedene 
Verdauungsenzyme produziert, obwohl er gar keinen Darmtrakt mehr besitzt, dass er ein 
Hemoglobin produziert, welches für den Wirt toxisches Sulfid vermutlich binden kann, und 
außerdem in großer Menge Hemerythrin synthetisiert, welches unempfindlich gegenüber 
Kohlenstoffmonoxid ist. Beide Atmungsproteine helfen dem Wirt die negativen Effekte beider 
toxischen Gase auf seinen Organismus zu mindern. Desweiteren habe ich die Proteine 
untersucht und katalogisiert, die Teil des Immunsystems des Wirts sind, und damit einen 
wichtigen Faktor in der Etablierung und im Fortbestand der Symbiose darstellen.  
 

Diese Arbeit trägt zum Verständnis der jüngesten Evolution von Wirt und Symbionten, 
ihrer intraspezifischen Diversität und Transmission bei, und liefert die erste funktionelle 
Beschreibung und Interpretation des Spirochaeten-Genoms. Desweiteren wurde in dieser Arbeit 
eine Datenbank  von verbesserten oder sogar komplett neuen Symbionten-Genomen erzeugt, 
sowie eine Katalogisierung von Wirtgenen vorgenommen, die die Basis von zukünftigen 
Untersuchung zur Funktion von diesen Symbionten und den molekularen Interaktionen mit 
ihrem Wirtstier sein werden.  
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List of Abbreviations 
 

AMP antimicrobial protein or peptide 

CO carbon monoxide 

DAMP damage-associated molecular pattern 

DAP diaminopimelic acid 

FISH fluorescence in situ hybridization 

LPS lipopolysaccharide  

LTA  lipoteichoic acid 

Lys lysine  

MAMP microbe-associated molecular pattern 

MHC major histocompatibility complex 

MOX methane oxidizing bacterium 

OMP outer membrane protein 

PHA polyhydroxyalkanoate  

RNS reactive nitrogen species 

ROS reactive oxygen species 

rRNA ribosomal ribonucleic acid 

PAMP pathogen-associated molecular pattern 

PGN peptidoglycan 

PGRP peptidoglycan recognition protein 

PHA polyhydroxyalkanoate  

PRR pattern recognition receptor 

SNP single nucleotide polymorphism 

SOX sulfur-oxidizing bacterium 

sp. species 

spp.  multiple species 

SRB sulfate-reducing bacterium 

TEM transmission electron microscopy 

TLR Toll-like receptor 
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Chapter 1: Introduction 

1.1 Symbiosis – Definitions and Relevance 

In natural environments, organisms do not live by themselves but are in constant contact with 

other types of organisms. When organisms of different species form intimate and long-lasting 

associations with each other, this is referred to as “symbiosis” (from the Greek words “syn” 

meaning “with” and “bios” meaning “life”).  

The concept of symbiosis was developed in the 19th century as a result of the detailed study of 

lichens, which are highly intimate, mutually beneficial associations of fungi with algae or 

cyanobacteria. The idea that lichens weren’t self-contained, discrete entities, but instead 

composites of two different organisms, was revolutionary and met with much skepticism at the 

time [1]. At first, many believed that this association had to be detrimental, because the concept 

of two species merging to benefit each other, whilst simultaneously upsetting conventional 

systematics, was hard to accept. However, several scientists recognized the true nature of this 

association, and understood that interactions between different species are not limited to 

competitive, predatory or parasitic modes, but range from loose to highly intimate and from 

pathogenic or parasitic to mutually beneficial [1]. Albert Bernhard Frank (1839 – 1900) was the 

first who gave this phenomenon a name by referring to different species that live on or within 

one another as symbiosis (symbiotism, German Symbiontismus, [2]). Anton De Bary (1831 - 1888), 

who is often credited with inventing the term, conveyed the concept to a wider scientific 

audience at a meeting of the German Association of Naturalists and Physicians in Kassel in 1878, 

where he defined it as "the continuous living together of differently named organisms" (German: 

Das fortwährende Zusammenleben ungleichnamiger Organismen, [3, 1]).  

The meaning of this term was initially not restricted to beneficial interactions, but encompassed 

neutral and harmful associations as well. Despite this, the term symbiosis has since then often 
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been used to exclusively describe beneficial associations, but is nowadays mostly used in the 

original, broader sense in the scientific literature [4]. In this thesis, I will use the term “symbiosis” 

in its original broad sense. Further, I will refer to the smaller (usually microbial) one of the 

symbiotic partners as “symbiont” and the larger (usually multicellular, macroscopic) one as 

“host”, or, in cases where this distinction is not relevant, simply as the “biont(s)”.  

1.1.1 Definition and classification of microbial symbiotic interactions 

As defined by Frank and De Bary, the term symbiosis covers all types of close and lasting 

associations between different species, which range from beneficial for both partners 

(mutualism), beneficial to only one partner, but without detrimental effect on the other 

(commensalism), to harmful associations where the fitness of one partner is negatively affected 

by the other (antagonism, pathogenicity or parasitism).  

Often, a clear classification into one of these categories is difficult or impossible, either because 

the mutual fitness effects have not been demonstrated and are challenging to rigorously test, or 

because they are better described as a continuous spectrum where dynamic, environmental or 

genetic factors define the nature of the relationship at any given time [5, 6, 7, 8, 9]. Many such 

examples exist in nature. For instance, Wolbachia, a common bacterial symbiont in arthropods 

and nematodes, acts as a reproductive parasite in many insects species [10], but is a mutualistic 

symbiont essential for normal development and fertility in filarial nematodes [11]. But even in 

insect species, Wolbachia can be mutualistic by supplying essential vitamins to their host [12]. 

Wolbachia could therefore be characterized as either mutualistic or parasitic, depending on the 

host species it is associated with. As a further example, plant – fungal associations are often 

even more plastic, and can switch from mutualism to parasitism within the same host when 

environmental factors cause an imbalance in the reciprocal exchange of nutrients between plant 

and fungal bionts [13]. An example of conditional parasitism in the marine environment is the 

association of reef coral with the bacterium Vibrio shiloi [14], which was identified as the 
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causative agent of bleaching in Mediterranean coral [15, 16]. However, V. shiloi only becomes 

pathogenic at elevated temperatures, which, among other things, cause it to express a peptide 

toxin that inhibits the photosynthetic activity of the host’s symbiotic zooxanthellae. However, it 

is harmless at temperatures under 25 °C [17, 14].  

Symbiotic interactions are further classified by whether the association is highly specific or 

unspecific (permissible) and whether the association is optional (facultative) or essential 

(obligate) for the partners. Symbiotic interactions can be facultative for one biont, and obligate 

for another within the same symbiosis (example pathogenic symbiosis: Pneumocystis in 

mammals [18], example mutualistic symbiosis: sulfur-oxidizing symbionts in Riftia [19]). Lastly, 

symbioses are further defined by whether the symbionts are located on the outside 

(ectosymbiosis) or within (endosymbiosis) the host, and whether they occur intra- or 

extracellularly. Commensalistic ectosymbionts are often referred to as epibionts.  

1.1.2 Significance and functions of beneficial microbial symbioses  

Once regarded as a curiosity, it is now increasingly understood that beneficial symbioses 

between organisms are common and ubiquitous, fundamentally shape the evolutionary path of 

organisms and significantly influence nearly all biological aspects of life on earth [20, 21, 22, 23, 

24]. Symbiotic interactions exist between many different lineages within all three domains of life 

and encompass a large variety of different lifestyles and functions [25, 26, 27]. Mutualistic 

partnerships are wide-spread in nature, because they allow the exploitation of resources and the 

occupation of ecological niches that would be inaccessible to the individual partners, but 

become available in concerted effort.  

Symbioses dominate large and important ecosystems on this planet. For example, more than 

90% of all land plants form symbiotic associations with fungi, called mycorrhizae, which allow 

the plants to mobilize nutritional minerals from soil [28], while virtually all herbivorous animals 
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rely on cellulose-degrading gut microbes to digest plant fiber [29, 30, 31]. Several plant groups, 

especially legumes, form endosymbiotic root-nodule symbioses with nitrogen-fixing bacteria 

that allow them to grow on nitrogen-deprived substrates [32]. Similar to the terrestrial 

environment, symbioses between nitrogen-fixing cyanobacteria and marine algae allow primary 

productivity in nitrogen-limited ocean waters [33]. Coral reefs, the “rainforests of the sea”, are 

built by mutualistic coral – algal symbioses [34], and enormous animal communities at deep sea 

hydrothermal vents, “oases of life” in an otherwise desolate environment, are supported by 

chemosynthetic associations (section 1.4). Microbial symbionts further provide nutritional 

benefits to a majority of animals by synthesizing essential vitamins, amino acids and co-factors 

that are lacking or low in their normal diet [12, 35, 36]. However, microbial symbionts not only 

confer nutritional benefits, but can also provide many other functions to their hosts, including 

waste product recycling, defense against pathogens and predators, attraction and killing of prey 

and resistance to abiotic stressors, like toxins and heat (Table 1, p. 14).  

While in all these examples the host clearly benefits from the symbiosis, the fitness benefits for 

the microbial symbionts are often much less clear and sometimes debatable [8, 37]. Mostly they 

are hypothesized to lie in the provision of surfaces for colonization [38, 39, 40], a “sheltered 

environment” with reduced competition and protection from predators [41, 42], increased 

dispersal rates [43, 44], and increased accessibility to nutritional resources [45, 46, 47, 48, 40]. 
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Table 1: Benefits of microbial symbionts to eukaryote hosts 

Symbiont function Examples 
Fixation of inorganic carbon into 
digestible biomass 

Photosynthetic algae/cyanobacteria in lichen [49] 

Photosynthetic algae chloroplasts in sea slugs [50] 

Photosynthetic algae in corals [51] 

Chemosynthetic bacteria in invertebrates and ciliates [52, 53] 

Fixation of atmospheric nitrogen  Plant root nodule symbioses with Rhizobia [54] 

Cyanobacteria in coral reef sponges [55] 

Gammaproteobacteria in shipworm symbioses [56] 

Hindgut bacteria of termites [57] 

Synthesis of essential nutrients Synthesis of essential amino acids by Buchnera symbionts in plant-
sap feeding aphids [35] 
Synthesis of B-vitamins by Wigglesworthia in blood-feeding tsetse 
flies [58] 

Cellulose degradation Rumen symbioses of mammalian herbivores [29] 

 Wood digestion by hindgut microbiota in termites [30] 

Recycling and conservation of 
metabolic waste products 

Gutless oligochaete symbionts [59, 60] 

Algal symbionts in coral [61] 

Detoxification of harmful 
substances 

Sulfide detoxification in chemosynthetic symbioses [62, 39] 

Symbiont-mediated pesticide tolerance in insects [63] 

Bacterial breakdown of plant toxins in guts of herbivorous insects 
[31] 

Stress tolerance Thermal tolerance in aphis [64] 

Defense against pathogens Gut microbiota in vertebrates [65] 

 Resistance to pathogenic fungi in ants [66] 

Defense against predators Counterillumination in bobtail squid [67] 

 Resistance to parasitic wasps in aphids [68] 

Attraction and killing of prey Bioluminescence in deep-sea fish [69] 

 Production of toxins in entomophagous nematodes [70] 

Bridging of chemical gradients Meiofaunal chemosynthetic symbioses [39, 40] 
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1.2 Symbiosis as a driving force in evolution 

Without a doubt, symbiotic interactions have profoundly shaped the evolution of life on earth. 

The evolution of eukaryotes themselves is a result of symbiosis: mitochondria are thought to 

have resulted from the endosymbiotic uptake of an alphaproteobacterial Rickettsia-like 

bacterium by the proto-eukaryotic cell [71], a theory that is well supported by morphological, 

biochemical and genetic evidence [71, 72, 73]. The eukaryotic nucleus is also hypothesized to be 

derived from endosymbiosis (engulfment of an archaeum by a eubacterium), although this is still 

highly debated [74]. Later, endosymbiosis of a cyanobacterium by a eukaryotic cell lead to the 

evolution of chloroplasts, and the rise of photosynthetic eukaryotes [72, 75]. Further (secondary 

and tertiary) endosymbiotic events lead to the evolution of many other photosynthetic 

eukaryotic lineages [76, 77, 75]. In the following sections, I will give an overview of i) how 

microbial symbionts have influenced the evolution of animals, and how they contribute to host 

speciation, and ii) how association with a eukaryotic host influences the evolution of symbionts. 

1.2.1 Impact of mutualistic symbiosis on animal evolution and speciation 

The evolution of animals has been mostly investigated leaving symbiosis out of the picture [78, 

79, 80, 81, 82]. However, microbial symbionts undoubtedly made significant contributions to 

animal diversification. Speciation (i.e. the evolution of genetically distinct populations) requires 

the formation of reproductive barriers that prevent interbreeding between diverging insipient 

species (i.e. speciation requires reproductive isolation). Speciation is enabled through various 

processes, presented in Figure 1 (p. 16). 

When complex multicellular eukaryotes arose, they did so in an environment that was already 

teeming with microbial life for at least two billion years [83]. Since the beginning, animals (and 

of course also plants) have evolved in the presence of microbes and have formed remarkable 

beneficial symbioses with many of them (section 1.1.2). Symbionts have greatly influenced their 

hosts’ evolutionary trajectories by providing them with new traits that allowed them to exploit  
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Figure 1: Mechanisms that drive speciation. A) Sympatric speciation: Divergence of populations 
without migratory barriers due to genetic polymorphisms that cause disruptive selection 
(extreme ends of a trait spectrum are favored by selection, while intermediates are not, 
including sexual conflict and assortative mating), and the creation of a “magic trait” (i.e. a trait 
that underlies disruptive selection and also pleiotropically promotes reproductive isolation) [78, 
84]. B) Allopatric speciation: Divergence of populations due to migratory barriers which prevent 
gene flow. The so separated populations go different evolutionary paths, due to genetic drift 
and/or adaptation to different conditions across the physical barrier. If the populations have 
diverged sufficiently, removal of the migratory barrier will not reinstate interbreeding [85]. C) 
Parapatric speciation: Speciation through adaptation to geographically adjacent ecological 
niches in an environmentally continuous gradient. Hybridizations occur at a thin line of contact, 
but end populations are too diverged to interbreed successfully [86]. A typical example is the 
formation of “ring species” [87]. D) Peripatric speciation: a sub-form of allopatric speciation, in 
which a much smaller, peripherally isolated population diverges faster than in classical allopatric 
speciation due to selection bottlenecks [88]. Peripatric speciation allows the formation of more 
than one sister species from the same common ancestor, i.e. breaking the typical dichotomy of 
diverging species. It is often observed at the edges of large populations (e.g. brown bear -> polar 
bear [89]), or in species colonizing small islands from a large mainland population. Yellow, 
original population; light and dark blue, new diverging populations; yellow-blue gradient, 
geographically overlapping diverging populations; checkerboard pattern, reproductive isolation 
prevents genetic mixing.  
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new ecological niches that were previously inaccessible. For example, the evolution of 

herbivorous and xylophagous animals is tightly linked to the acquisition of mutualistic microbes 

that break down indigestible food components, like cellulose and lignin [90]. The association 

with nutritional endosymbionts has strongly influenced the evolution and diversification of many 

insect groups by allowing adaptation to new host plants (=host-shift) or other food sources, 

including herbivorous and plant-parasitic aphids [91, 92, 93, 94, 95], grain weevils [96], fruit flies 

[97], leafhoppers [98], stinkbugs [99], and blood-feeding tsetse flies [100]. As another example, 

the evolution of herbivorous ants from carnivorous ancestors was independently facilitated 

through the uptake of nutritional Rhizobiales-symbionts at least five times [101]. Further 

examples in other animal phyla include the evolution of rumen symbioses in herbivorous 

mammals [29] and chemosynthetic symbioses in ciliates, sponges, annelids, mollusks, and 

nematodes [52, 53]. These examples illustrate how microbial symbionts contribute to host 

diversification by facilitating the adaptation to ecological niches (=ecological speciation), a major 

driver for the evolution of new species (Figure 1). 

It has recently been argued that microbial symbionts also cause reproductive isolation directly, 

without involving ecological isolation. This includes pre- and post-mating isolation mechanisms, 

like behavioral isolation (pre-mating), direct interference with host reproductive biology (pre- 

and post-mating), and isolation through immunological adaptations to the symbiotic microbes 

that cause immune incompatibilities in hybrids (post-mating, colloquially termed “The Large 

Immune Effect”) [102, 103]. Interestingly, all of these mechanisms allow the reduction of gene 

flow between populations that are not geographically isolated, i.e. they are ideal mechanisms 

for explaining strict sympatric speciation, the existence of which has been debated since Darwin 

and Wallace [78]. 

Behavioral isolation. Microbial symbionts may contribute to reproductive isolation by 

influencing host mating preferences or courtship behavior and thereby reducing gene flow 
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between populations that carry different microbiota [103]. It was shown that gut microbes 

influence mating behavior in Drosophila melanogaster, presumably through changing the levels 

of cuticular sex pheromones [104]. In this study, Drosophila were reared on two different media 

(molasses medium vs. starch medium) for one generation and exhibited a strong mating 

preference towards individuals that were reared on the same medium, which lasted for at least 

37 generations (more were not tested). This behavior could be cured with antibiotic treatment 

or by artificially infecting hosts with microbes that are typical for flies reared on the other 

respective medium. Another study carried out on D. melanogaster showed that Wolbachia 

symbionts influence mate discrimination dependent on Wolbachia infection load [105]. 

Wolbachia was also shown to increase mate discrimination between incipient species of 

Drosophila paulistorum [106]. In grub beetles, sex pheromones produced by symbiotic bacteria 

located in special glands of the female reproductive organs influence mating behavior as well 

[107]. In vertebrates, proteins of the major histocompatibility complex (MHC), an important part 

of adaptive immunity, have been shown to play a role in mate preference [108, 109, 110, 111], 

and it has therefore been argued, that immunological adaptation to pathogens and the resulting 

changes in MHC diversity promote speciation [112]. 

Influence on host reproductive biology. Between 20-75 % of arthropod species harbor the 

intracellular reproductive parasite Wolbachia, an Alphaproteobacterium [113, 114, 115]. 

Wolbachia are vertically transmitted through the female germline, but host switches occur 

occasionally. Wolbachia influence the reproduction of their hosts in four major ways: i) killing of 

infected male embryos, ii) feminization of infected males, iii) induction of parthenogenesis in 

infected females, and iv) inducing cytoplasmic incompatibility (CI) in hybrids of infected males 

and uninfected females (unidirectional CI), or males and females that are infected with 

incompatible strains of Wolbachia (bidirectional CI) [10]. These mechanisms increase the 

number of infected females in the host population, and hence, Wolbachia fitness, but often 
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reduce host reproductive success in the process.  These mechanisms also reduce gene flow 

between infected and uninfected parts of the population to varying degrees from blocking gene 

flow only in one direction (e.g. in unidirectional CI) or blocking successful interbreeding 

completely (e.g. between specimens infected with incompatible Wolbachia strains). In the latter 

case, reproductive isolation arises spontaneously even between animals that are genetically 

identical. Other bacteria than Wolbachia manipulate arthropod reproduction: Cardinium [116, 

117], Rickettsia [118], and Spiroplasma [119] were all shown to interfere with host reproduction 

in similar ways.  

“The Large Immune Effect.” The term was coined in [103] and refers to immune-related 

incompatibilities in hybrids that arose from fast adaptation of immune genes to resident 

microbiota in the parent species. To illustrate, hybrids between very closely related species that 

each harbor different microbiota might not be viable (hybrid autoimmunity) or experience 

significant fitness defects (hybrid susceptibility), because their immune systems are not properly 

adapted to the new microbiota and immune responses are insufficient or get out of hand. Two 

recent publications from the Bordenstein lab demonstrate this immune breakdown in hybrids 

caused by i) Wolbachia [120] and ii) gut microbiota [121] in Nasonia wasps. The same 

phenomenon is also documented in plant hybrids [122, 123, 124]. 

1.2.2 Impact of obligate mutualism and transmission mode on symbiont evolution 

Symbionts not only impact host evolution, but their own evolution is also influenced by a host-

associated lifestyle. First, hosts provide new and unique ecological niches that drive the adaptive 

radiation of symbionts [125, 126, 127, 128], and promote the evolution of clades that are unique 

to a particular host species or host group [129, 130]. Second, obligate host restriction and strict 

vertical transmission has profound impacts on symbiont genome evolution.  
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Symbiont transmission. Symbionts can be transmitted from one host generation to the next via 

three routes: i) horizontal transmission, in which aposymbiotic (symbiont-free) offspring must 

acquire the symbionts from the environment anew in each generation (Figure 2a, p. 21), ii) 

vertical transmission, in which the symbionts are transferred from parent to offspring via direct 

transfer through the female germline (Figure 2b), and iii) mixed mode transmission, in which 

symbionts are mostly transferred via vertical transmission, but are occasionally also transmitted 

horizontally from other hosts (host-switching, Figure 2c).  

Influence of obligate host-association and vertical transmission on symbiont genome 

evolution. The genomes of obligately host-associated, vertically transmitted symbionts often 

show the same trends in the evolution of their genomes: small genome size, low GC content, 

high coding density, accelerated rates of amino acid substitutions, loss of functions that are not 

necessary within the host environment, loss of functions involved in DNA repair, and loss of 

mobile genetic elements, like transposases and phages [131, 132, 133]. However, some vertically 

transmitted symbionts show high loads of transposable elements [134, 135, 136, 137]. This is 

hypothesized to occur  in the early stages of host-restriction, as symbionts derived from free-

living ancestors with large genomes and few mobile elements are subject to other evolutionary 

forces and selection pressures within the host [138]: i) host-restricted symbionts have smaller 

effective population sizes which reduces purifying selection and allows the inactivation of 

beneficial genes through genetic drift, and ii) the new host environment reduces purifying 

selection on genes that are no longer essential for survival [139, 140]. Genes that are commonly 

lost due to these processes include those involved in DNA repair and maintenance [131]. As a 

result, mobile genetic elements, which are usually present at low levels in free-living bacteria, 

proliferate without a check [138]. The spread of mobile elements promotes gene deletions and 

gene inactivation, accelerating the process of gene loss [141, 142]. Eventually, mobile elements 

and inactivated genes are deleted from the genomes, leading to highly reduced genomes free of 
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mobile DNA that keep slowly deteriorating over time [138, 143]. High loads of mobile elements 

have been reported from the intracellular symbionts Wolbachia and Shigella flexneri that did not 

recently become host-restricted [144, 145, 146], which seems to contradict the model of 

symbiont genome evolution proposed by Moran and Plague. However, these symbionts are 

prone to host-switches, and, although intracellular, often come into contact with other strains 

and bacteria, giving them the opportunity to pick up new genes, including mobile elements, via 

horizontal gene transfer [145]. 
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Figure 2: Different transmission modes by which symbionts are transferred to offspring. 
(Adapted from [147]) 
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1.3 Role of the animal innate immune system in microbial symbiosis 

Beneficial symbiotic interactions with microbes require specific recognition and tight regulation 

by the animal host during all stages of its life cycle. At the beginning of infection, the host must 

specifically recognize and respond to the correct symbiont phylotype(s), in order to avoid uptake 

of unwanted microbes. Then, symbionts must be guided and restricted to the intended locations 

for colonization in order to prevent misdirected, harmful interactions that can lead to disease. 

Over the course of the symbiotic relationship, constant molecular cross-talk between symbionts 

and host is required to safely establish and maintain a beneficial interaction. These functions are 

largely fulfilled by the host’s immune system and its reciprocal interaction with molecular 

microbial cues [148, 149, 150].  

Historically, the immune system has been regarded primarily as an arsenal of weapons intended 

to rapidly fight off any pathogenic intruders, and its involvement in inducing and maintaining 

beneficial interactions with microbes was long overlooked. With the realization that most 

animals are colonized by a diverse microbial community that is highly integrated with host 

physiology and immunity, often to the host’s benefit, this view has recently changed 

considerably [26, 151, 152]. Molecular mechanisms that foster beneficial symbioses between 

animals and microbes turned out to be essentially the same as those that were initially seen 

simply as pathogen extermination strategies and microbial virulence factors causing disease [153, 

154, 149, 26, 155, 151, 156].   

In invertebrate animals, adaptive immunity does not exist, and all immune functions are carried 

out by components of the native innate immune system [157]. Jawed vertebrates, on the other 

hand, additionally possess adaptive (acquired) immunity, which allows a highly specific, 

amplified response to pathogenic encounters and confers immunological memory, i.e. the ability 

to immediately recognize and efficiently respond to specific microbes on repeated contact [158]. 

The innate immune system has long been regarded as a simple unspecific defensive barrier, 
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incapable of discriminating between microbes beyond basic categories such as viruses, gram-

positive or gram-negative bacteria and fungi, by employing a rather limited set of microbial 

pattern recognition receptors [159, 160]. Again, fairly recent advances have brought a new 

perspective to invertebrate immunity, demonstrating its ability to recognize and respond to 

microbes with high specificity and nuance [161, 162, 163, 149, 164, 148, 165]. This should not 

come as a surprise, as many symbioses are highly specific [166, 167, 168, 148, 169, 130]. 

Although specificity can be achieved through various mechanisms (such as highly selective 

competition for resources in a particular niche within the host that automatically excludes 

certain strains), the immune system is clearly involved in many cases [170, 167, 168, 171]. 

Furthermore, new studies are beginning to uncover alternative mechanisms for high specificity, 

adaptive immunity and memory in some invertebrates [172, 173, 162, 174] (see [175] for a 

critical review of the more controversial findings). The following sections will give a brief 

introduction and overview of the innate immune mechanisms of invertebrates, and how they 

are employed in beneficial symbiotic interactions. 

1.3.1 Components of the innate immune system in invertebrates 

Mirroring invertebrate phylogenetic diversity, the diversity of immune mechanisms and 

molecules in these animals is high [176, 177]. However, basic concepts and broader categories of 

immune components have a long evolutionary history or evolved convergently several times, 

and are therefore still comparable between organismic groups [178].  

As with adaptive immunity, the innate immune system can be conceptually divided into cellular 

and humoral components. Cellular immunity is conferred by mobile cells that are able to 

eliminate detrimental microbes by either engulfing them (phagocytosis) or by immobilizing and 

destroying them through various other mechanisms (Table 2, reviewed in [179]). These types of 

cells are differently named depending on the anatomy of the animal and their location, but fulfill 

similar functions in different animals. For example, acoelomates such as cnidarians possess 
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mesogleal wandering cells called amoebocytes; coelomate animals like annelids possess 

coelomocytes which patrol the coelomic fluid, while arthropods and mollusks possess 

hemocytes that circulate in the hemolymph. Typically, specialized sub-types of these cells exist 

that can differ in size, shape, behavior and/or specific function [158].  

Humoral immunity refers to those components of the immune system which consist of 

molecules secreted into extracellular fluids, like blood, lymph, hemolymph and coelomic fluid. 

These include complement proteins, antimicrobial peptides and other cytotoxic compounds, 

soluble pattern recognition molecules and chemokines/cytokines [180, 158, 181]. Table 3 (p. 26) 

summarizes the different classes and functions of humoral immune molecules in invertebrates.  

 
Table 2: Functional roles of immune cells (cellular immunity) 

Functional role Explanation 
Coagulation Release of coagulation (clotting) factors that agglutinate in order to 

close open wounds and to trap microbes for subsequent elimination.  

Encapsulation Used to eliminate particles that are too large for direct phagocytosis; 
immune cells gather around the particle and destroy it with cytotoxic 
molecules and digestive enzymes. The cells form a tight sheath around 
the target through surface cell adhesion molecules. Encapsulation is 
usually followed by melanization. 

Melanization Production and deposition of melanin, which polymerizes and traps the 
target, and also produces cytotoxic reactive oxygen species as side-
products. 

Opsonisation Release of proteins (called opsonins or agglutinins) such as lectins that 
coat and agglutinate the target and make it easier to be subsequently 
phagocytosed by host cells. 

Phagocytosis Engulfment of cells and other particles and subsequent intracellular 
digestion within phagosomes (phagocytosis also has a nutritional role in 
some animals like filter-feeders) 

Production of AMPs Release of antimicrobial proteins (AMPs) or other microbicidal 
compounds, such as reactive oxygen and nitrogen species (ROS/RNS), to 
kill a target extra- or intracellularly (following phagocytosis). 
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Table 3: Classes and functions of humoral components in innate immunity 

Humoral immune component Function 

Antimicrobial proteins/defensins A large group of microbicidal molecules of different 
composition and structure, unified by their ability to 
disintegrate microbial membranes. Examples include 
cecropins, cysteine-, proline- or glycine-rich peptides, 
lumbricins/fetidins, perforins, bactericidal permeability 
increasing protein (BPI) and lysozyme. 

Chemokines/Cytokines A large group of small proteins that mediate immune 
responses by activating and trafficking immune cells. 
They include macrophage inflammatory protein (MIP), 
interferons, interleukins, and tumor necrosis factor. 
Cytokines are also released by cells upon recognition of 
microbe-associated patterns (MAMPs). 

Coagulation cascade A protease-mediated activation cascade triggered by 
soluble pattern recognition proteins and resulting in the 
agglutination of soluble precursor-proteins to close open 
wounds and entrap microbes.  

Complement proteins The complement system consists of a proteolytic cascade 
that results in the recruitment of phagocytes via 
cytokines, and opsonisation or lysis of microbes. Different 
complement pathways exist. 

Pattern recognition proteins Proteins able to specifically bind conserved microbe-
associated molecular patterns (MAMPs), such as 
lipopolysaccharide and peptidoglycan. These include 
peptidoglycan recognition proteins (PGRPs), fibrinogen-
related proteins (FREPs), glucan binding proteins (GNBP) 
and various classes of lectins. Pattern recognition 
proteins usually trigger an antibacterial immune response 
via numerous possible pathways (further explored in 
chapter 1.3.2). 

 

 

1.3.2 Interactions of the innate immune system with beneficial symbionts 

All immune functions described in the previous two sections require the reliable and specific 

recognition of microbes by the host in order to mount an appropriate response. It is important 

for the host to be able to distinguish between beneficial and harmful microbes and to modulate 

the immune response accordingly. Failure to recognize and combat pathogenic colonization 

results in disease and death. However, sustained inflammation in response to harmless 
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symbionts is highly damaging to the host as well [182, 183, 167]. Hosts are capable of 

differentiating between microbes and responding appropriately by employing a diverse array of 

recognition receptors and molecular signaling pathways, which I will summarize in the following.  

Invertebrates sense the presence of microbes by binding microbe-derived molecular structures 

called microbe-associated molecular patterns (MAMPs) via pattern recognition receptors (PRRs) 

[184, 185]. MAMPs are conserved molecules that microbes release or carry on their cell surfaces 

and that are common and unique to a particular group of microorganisms. Typical MAMPs 

include peptidoglycan (PGN), lipopolysaccharide (LPS), lipoteichoic acid (LTA), flagellin and outer 

membrane proteins (OMPs), which are characteristic for different bacterial groups, and different 

surface carbohydrates like β-glucan and chitin which are characteristic of fungi. MAMPs, which 

are clearly not restricted to the pathogenic microbes, were originally called PAMPs (pathogen-

associated molecular patterns), reflecting the pathogen-centric context in which these 

mechanisms were discovered [186, 187, 156].  

Recognition of MAMPs by host PRRs initializes an intracellular signaling cascade that results in a 

change of gene expression and behavior of the host cell (Figure 3, p. 28). Typical host MAMP 

receptors include peptidoglycan recognition proteins (PGRPs), glucan-binding proteins (GNBPs), 

and Toll-like receptors (TLRs), which directly or indirectly activate immune signaling pathways, 

like Toll and IMD, upon MAMP binding (Table 4, p. 29). The activation of these pathways leads to 

proinflammatory, antibacterial responses, for example through the production of antimicrobial 

proteins (AMPs), release of reactive oxygen/nitrogen species (ROS/RNS) that damage cellular 

structures, release of chemokines to attract immune cells, activation of complement and 

induction of phagocytosis [185, 148].  

While PRR signaling serves to initiate immune responses and eliminate pathogens, it also plays 

an important role in establishing and maintaining beneficial symbioses, through both, immune  
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Figure 3: Interaction of the host immune system with microbes. In beneficial and harmful 
associations alike, the binding of MAMPs to host PRRs results in the activation of an 
antimicrobial immune response, mediated through intracellular signaling cascades and an 
alteration of gene expression. The antimicrobial immune response includes the production of 
antimicrobial proteins (AMPs) and reactive oxygen or nitrogen species (ROS/RNS), as well as the 
activation of complement and initiation of phagocytosis. In commensal/beneficial symbioses, the 
immune response is often down-regulated after the initial encounter to avoid damaging the 
symbionts and to avoid constant inflammation in the host.  

 

activation and inhibition. For example, in the cnidarian Hydra, activation of Toll signaling by a 

MAMP binding TLR-like receptor results in the production of antimicrobial proteins, which 

prevent pathogenic colonization and promote the establishment of a host-specific symbiont 

community in embryos and adult polyps [188, 189, 171]. In the corn weevil Sitophilus, growth of 

the obligate endosymbiont SPE is controlled and restricted to the symbiotic tissue (the 

bacteriome) by the expression of coleoptericin-A, an antimicrobial peptide that inhibits bacterial 

cell division [190]. At the same time, the expression of a peptidoglycan-degrading PGRP and 

Tollip, an inhibitor of Toll signaling, prevents excessive immune responses towards the symbiont  
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Table 4: Common intracellular immune signaling pathways in invertebrates 

Pathway Function 
Toll pathway Signaling cascade which is activated by ligand-binding of Toll-like 

receptors (TLRs). TLRs can bind MAMP ligands directly, or are 
activated indirectly by binding a mediator protein, which is 
previously activated after MAMP binding by recognition proteins 
like PGRP or GNBP [191, 192]. Activation of the Toll pathway 
induces the expression of genes that convey an antimicrobial and 
proinflammatory response, e.g. genes coding for cytokines and 
AMPs [193, 194]. Toll signaling is also specifically involved in 
mediating beneficial host-microbe associations [195, 196, 197]. 
TLRs are conserved throughout the Metazoa, albeit missing in the 
Platyhelminthes. The Toll pathway is furthermore involved in 
embryonic development in insects and nematodes [194, 198].  

IMD pathway Signaling cascade which is activated by binding gram-negative DAP-
type peptidoglycan to membrane-integral peptidoglycan 
recognition proteins (PGRPs) in insects [199]. It is named after 
Drosophila immunodeficiency mutants. Like the Toll pathway, IMD 
activates nuclear transcription factors which lead to the expression 
of antimicrobial proteins [200]. Unlike Toll, IMD has no additional 
functions in development.  

p38 MAPK pathway A phosphorylation cascade employing at least three core kinases 
(MAPK kinase kinase (MKKK) -> activates MAPK kinase (MKK) -> 
activates p38 mitogen-activated protein kinase (p38 MAPK)). Plays 
a role in many biological processes including immunity, apoptosis, 
cell cycle regulation and cell differentiation, often in cross-talk with 
other signaling pathways [201, 202]. A wide range of stimuli 
activate p38 MAPK signaling, including LPS, cytokines, heat and 
osmotic stress.  

 

in the bacteriome [203, 204]. In Drosophila, binding of DAP-type peptidoglycan (indicative of 

gram-negative bacteria) to a membrane-integral PGRP in the gut epithelium triggers an 

antimicrobial response via IMD and p38 MAPK signaling. This leads to the production of an AMP 

(via IMD) and ROS (via p38 MAPK), which were shown to be essential for resisting food-borne 

pathogenic bacteria [205, 206]. At the same time, IMD signaling is dampened in three major 

ways in the Drosophila gut to protect the resident microbiota from constant AMP expression: i) 

induction of Pirk (poor IMD response upon knock-down), a negative regulator of IMD signaling, 
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via IMD signaling itself [207], ii) action of amidase-active PGRPs in the gut lumen that degrade 

peptidoglycan (i.e. hampering IMD signaling by destroying the elicitor) [208] and iii) symbiont-

induced nuclear translocation of the transcriptional inhibitor Caudal, which represses AMP 

expression directly [209].  

Another extremely well-studied example of the involvement of MAMP-PRR interactions in 

symbiosis establishment and maintenance is the light-organ symbiosis between the bobtail squid 

Euprymna scolopes and bioluminescent Vibrio fisheri. The counterillumination provided by the 

symbionts through bioluminescence enhances host camouflage and helps the animal to avoid 

predation while foraging at night [67]. Freshly hatched squid are aposymbiotic and acquire their 

symbionts horizontally from the environment [210]. Selection of the specific symbiont from the 

highly diverse seawater community (in which it is not abundant) and subsequent colonization 

and maturation of the light organ are achieved by intricate molecular cross-talk of symbiont 

released MAMPs, and MAMP recognition and response by the host [211, 170, 212, 213, 155] 

(Figure 4). After successful colonization of the light organ by V. fisheri, MAMP degradation by a 

host-expressed PGRP and reduced binding of V. fisheri cells to hemocytes contributes to immune 

tolerance of this symbiont [167, 214]. 

Since MAMPs are not specific to pathogens or beneficial symbionts, and MAMP recognition is 

crucial in establishing and maintaining beneficial symbioses as well as fending off pathogenic 

intruders, the question remains how hosts are able to discriminate between beneficial and 

harmful encounters. (It should be noted that, although MAMPs are highly conserved, microbes 

do have the ability to modify details of the chemical structure of MAMPs, resulting in differential 

PRR stimulation. For example, several pathogens can produce different forms of LPS with PRR 

affinities ranging from very low to high [215, 216, 217].) Two main strategies for discriminating 

between beneficial symbionts and normal commensal microbiota or pathogenic infection have 

been proposed. First, mutualistic symbionts are usually restricted to specific tissues,  
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Figure 4: Role of MAMP recognition in the establishment of the squid-Vibrio light organ 
symbiosis. A) Location of the light organ in the body cavity of E. scolopes. B) Colonization of the 
light organ crypts by V. fischeri. The presence of bacteria stimulates the secretion of mucus, a 
peptidoglycan recognition protein (PGRP2) and other factors that promote V. fisheri growth and 
inhibit other bacteria (a, b), resulting in V. fischeri becoming the dominant bacterium (c). V. 
fischeri subsequently enters the light organ ducts (d) to colonize the light organ crypts (e). C) 
Colonization of the crypts results in the loss of ciliated appendages. D) MAMP recognition and 
signaling in the light organ cells. PGRP3, PGRP4 and TLR serve as PRRs which initiate the 
production of mucus, nitric oxide synthase (NOS), lipopolysaccharide binding protein (LBP), 
PGRP1 and PGRP2. PGRP2 and PGRP3 both possess amidase enzymatic activity, which cleaves 
immunogenic peptidoglycan fragments and reduces immune activation (promoting symbiont 
tolerance). After colonization of the crypts, peptidoglycan derived tracheal cytotoxin (TCT) from 
the symbionts induces the loss of PGRP1 from host nuclei in cells of the ciliated appendages. The 
loss of nuclear PGRP1 results in apoptosis of these cells and in loss of the ciliated appendages at 
the final stages of symbiosis establishment. Figure adapted from [185].  
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where their tolerance is achieved through limited expose to the immune system, or immune 

modulation and attenuation [170, 190, 218]. Second, pathogenic infection causes tissue damage, 

which results in the release of DAMPs (damage-associated molecular patterns), like DNA, ATP, 

uric acid, and DNA-binding proteins, into the extracellular space. DAMPs initiate an immune 

response and intensify the immune response in the presence of bacteria [219, 220, 221]. It was 

therefore proposed that the establishment and maintenance of beneficial symbioses is achieved 

through the interplay of i) co-evolved mechanisms that modulate MAMP recognition and 

signaling, ii) the sequestration of symbionts to designated tissues that allows for localized 

immune responses and physicochemical conditions that limit symbiont growth, and iii) the lack 

of DAMP signals that signify tissue damage in beneficial symbioses [148] (Figure 5). 

 

 
 
 
 
 
 
 
Figure 5: Model for establishment and maintenance of beneficial symbiosis. (Adapted from 
[148]) 
 

 

1.3.3 Annelid immunity and mutualistic symbioses 

Within the annelids, the innate immune system has been studied intensively in earthworms and 

leeches (both belong to the Clitellata), since they are easily accessible experimental systems, are 

of medicinal and ecological value and are classical models for comparative immunology [222, 

223, 224, 225, 226]. Earthworms have been studied with particular focus on tissue 

transplantation and short term immune memory [227], and leeches with respect to immune 

responses of the central nervous system [228]. Similar to other invertebrates, annelids employ a 

variety of cellular and humoral immune responses to fend off pathogens (reviewed in [229, 230, 
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228]), which include MAMP recognition through PRRs and the production of antimicrobial 

proteins (Table 5) [231, 232, 233]. While the immune system of these annelids is well studied 

from a classical pathogen-centric view, surprisingly little is known with respect to the molecular 

mechanisms that facilitate beneficial symbioses. In the following I will summarize what is 

currently known about the molecular interactions between hosts and mutualistic symbionts in 

annelids.  

 

Table 5: Components of the innate immune system in earthworms and leeches 

 Leech Earthworm Examples/functions 
Coelomocytes yes yes Phagocytosis, opsonisation, encapsulation, wound 

healing 

Microglia cells yes ? Migratory immune cells of the CNS 

Prophenol oxidase 
cascade 

? yes Melanization, potentially activating other antimicrobial 
responses as well [234, 235] 

MAMP recognition yes yes Toll-like receptors, mostly involved in immune defense 
[236, 237, 238], NOD-like receptor (only leech, [236]), 
uncharacterized lectins [239, 240, 241],  CFF (coelomic 
cytolytic factor, in earthworms [242]) 

Immune signaling via Toll yes yes Activation of antimicrobial response 
Antimicrobial proteins yes yes Earthworms: lysozyme, lumbricin, PP-1, OEP3121, 

fetidin, lysenin, eiseniapore, hemolysins, CFF [230] 
Leeches: lumbricin, neurohemerythrin [243], 
neomacin, theromacin, theromycin [244] 

 

Hydrothermal vent tube worm symbiosis: Ridgeia piscesae – SOX symbiont. Chemosynthetic 

tube worm symbioses have been extensively studied in terms of ecology and metabolism, in 

particular with respect to the sulfur-oxidizing (SOX) symbionts and their contribution to host 

nutrition [245, 246, 247]. However, the molecular mechanisms which are responsible for 

symbiont acquisition (symbionts are horizontally transmitted), and symbiosis establishment and 

maintenance have so far received less attention. A single study has investigated the expression 

of immune genes that are potentially involved in host-symbiont interaction in the hydrothermal 
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tube worm Ridgeia piscesae [233]. This study examined the expression of immune genes in the 

symbiotic tissue (trophosome) compared to non-symbiotic tissue (plume) using EST and 454 

pyro-sequencing of transcriptomes and qPCR. Several MAMP recognition molecules, 

components of intracellular immune signaling, and various immune effectors were identified 

and shown to be more abundantly expressed in the trophosome compared to the plume (Table 

6). These results show that complex MAMP-PRR interactions likely play a very important role in 

symbiont maintenance and regulation in tube worms, similar to other microbial invertebrate 

symbioses.  

 

Table 6: Immune genes potentially involved in host-symbiont interaction in R. piscesae [148] 

Immune genes over-expressed in the trophosome Hypothesized role in symbiosis 
LPS-induced tumor necrosis factor-alpha (LITAF) Not discussed, but induction of immune 

response in other animals [248] 
Peptidoglycan recognition proteins PGRP Rpi1, PGRP 
Rpi3, PGRP Rpi4, PGRP Rpi5 

Symbiont MAMP detection and mediation of 
immune responses 

Peptidoglycan recognition protein PGRP Rpi2 Amidase activity -> down-regulation of 
immune response through peptidoglycan 
degradation 

Toll-like receptor (TLR) Symbiont MAMP detection and mediation of 
immune responses 

Alpha-2-macroglobulin receptor associated protein 
(A2M) 

Activation of cytolytic activity 

Bactericidal permeability increasing protein (BPI) Not discussed, but antibacterial and LPS-
detoxifying roles in other animals [249, 250] 

NF-kappa-B inhibitor cactus Not discussed, but down-regulation of Toll 
signaling and antimicrobial response in other 
animals [251, 252] 

 

 

Earthworm nephridial symbiosis: Eisenia fetida - Verminephrobacter. Lumbricid earthworms 

like Eisenia harbor species-specific, extracellular, and vertically transmitted symbionts in their 

nephridia (excretory organs) [253]. The facultative symbionts have a beneficial effect on host 

reproduction, hypothesized to be related to the provision of vitamins by the symbionts [254, 
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255]. Although experimentally and genetically accessible, the earthworm nephridial symbiosis is 

a relatively new model for host-symbiont interaction, and therefore the molecular mechanisms 

that regulate this symbiosis are still unknown. However, the symbiont-expressed type IV pili and 

flagella were recently shown to be required for colonization of the nascent nephridia during 

embryogenesis [256]. The host immune mechanisms involved in this symbiosis remain to be 

studied. 

Leech-bacterial crop symbiosis: Hirudo verbana – Aeromonas/Rikenella. The blood-feeding 

leech Hirudo verbana harbors a simple microbial community in its crop (the main compartment 

of its digestive tract) that is heavily dominated by two bacterial symbionts: Aeromonas veronii 

and a Rikenella-like bacterium [257]. The low diversity of gut microbes is unusual, even for an 

invertebrate. Several reasons that promote this low community complexity have been brought 

forth: i) the extremely alkaline conditions of the gut environment, ii) the antibacterial, prey-

derived complement system of the ingested blood, which remains active for 1-2 days after 

feeding, iii) antibacterial peptides released by Aeromonas, iv) production of gut antimicrobial 

proteins by the host [258, 259]. Aeromonas and the Rikenella-like symbiont are hypothesized to 

benefit the host threefold: i) by supplementing essential B-vitamins, which are naturally lacking 

in the host’s diet that consists exclusively of vertebrate blood, ii) aiding in blood digestion, 

especially in the lysis of erythrocytes, and iii) supporting the leech immune system with the 

production of antimicrobials [260, 258, 257, 259].  Aeromonas veronii is of particular interest to 

comparative immunologists, since it is not only a mutualistic symbiont in the leech crop, but also 

an opportunistic pathogen in mammals, fish and amphibians [261, 257]. It therefore lends itself 

to investigations focusing on the mechanisms that allow pathogenic colonization in vertebrates 

and beneficial colonization in leeches [262, 263, 264]. Recent studies showed that Aeromonas 

veronii requires a type 3 secretion system (T3SS), for successful host colonization as a pathogen 

and as a beneficial symbiont [262]. In both cases, the T3SS helped to escape the host immune 
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system, albeit in different ways. In mice that were injected with A. veronii T3SS was crucial for 

killing macrophages, while in the leech the T3SS allowed A. veronii to attach to coelomocytes 

without inducing phagocytosis and without killing the coelomocytes [262]. The Rikenella-like 

symbiont does not possess a T3SS, but might escape phagocytosis by being embedded in crop 

mucus, and/or a bacteria-derived polysaccharide matrix [265]. Further colonization mutants 

where identified in [263], which, based on the annotation of the inactivated genes, were 

hypothesized to be the result of altered bacterial cell wall features, gene regulation, reduced 

capacity to import nutrients, and loss of function in the type 2 secretion system (T2SS). T2SS-

negative A. veronii mutants were further analyzed and revealed to be unable to export 

hemolysin, which is hypothesized to be involved in erythrocyte lysis and therefore heme 

acquisition [264]. Putative leech immune genes have been recently identified using 

transcriptomic sequencing [266], and next-generation sequencing is now used to investigate the 

transcriptomes of the leech microbial community [267], promising significant advances in the 

study of leech-symbiont interactions in the future.  
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1.4 Marine chemosynthetic symbioses 

In marine chemosynthetic symbiosis, an invertebrate animal or ciliate protist lives in close, often 

obligate association with chemosynthetic bacteria. The chemosynthetic symbionts are able to 

synthesize complex organic molecules from simple, inorganic substrates, and thereby provide 

their host with nutrition from sources that are otherwise inaccessible to animals. There are 

numerous types of chemosynthetic symbioses in the marine environment, covering a wide range 

of habitats, host taxa, symbiont phylotypes and types of symbiotic interactions. The following 

sections will give a definition of important terms and a brief introduction into marine 

chemosynthetic symbioses.  

1.4.1 Definition – chemosynthesis 

Primary production, i.e. the production of biomass from inorganic carbon sources (carbon 

fixation), is achieved through two principal processes on earth: photosynthesis and 

chemosynthesis. Photosynthesis converts energy from sunlight into chemical energy, which is 

then used to synthesize organic molecules, such as sugars, from water and carbon dioxide [268]. 

Likewise, in chemosynthesis, energy from the oxidation of reduced inorganic molecules (e.g. 

hydrogen sulfide) is used instead of sunlight to convert inorganic carbon (CO2/HCO3
-) or organic 

one-carbon molecules (CH4) into biomass. Many inorganic electron donor/electron acceptor 

redox couples could potentially yield sufficient energy to fuel carbon fixation, and some of these 

are realized in chemosynthetic symbioses (Table 7, p. 39).  

Organisms are classified by the types of energy, electron sources and carbon sources they use to 

fuel their metabolism (Figure 6, p. 38). In chemosynthetic symbioses, the most common types of 

chemosynthesis are thiotrophy (fixation of inorganic carbon coupled to the oxidation of reduced 

sulfur compounds, i.e. a form of chemolithoautotrophy -> sulfur-oxidizing (SOX) symbionts), and 

methanotrophy (use of CH4 as both electron donor and carbon source, i.e. a form of 

chemoorganoheterotrophy -> methane-oxidizing (MOX) symbionts).  However, many organisms 
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defy strict classification into only one of these nutritional categories, because they are able to 

use different sources of energy, electrons and carbon [269]. For example, many pelagic bacteria 

are able to use sunlight to generate ATP with proteorhodopsin, while still gaining energy, as well 

as electrons and carbon, from the degradation of organic matter taken up from the environment 

[270]. Such organisms, which combine multiple trophic strategies in their metabolism, are 

termed mixotrophs. Mixotrophy is more costly because more biochemical machinery is needed 

to exploit multiple resources, but also allows for the use of a wider range of substrates and 

energy sources. In a dynamic and resource-limited environment, this provides a significant 

advantage over more cost-efficient but metabolically restricted organisms. Mixotrophs therefore 

often play a role in symbioses that are characterized by fluctuating conditions and limited 

resource availability, for example in some sponges [271], hydrothermal vent tube worms [247], 

and in the gutless oligochaetes [59, 60]. [272, 273, 274, 275, 276, 277] 

 

 
Figure 6: Classification of primary nutritional groups and prominent examples of each group  
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1.4.2 Diversity of chemosynthetic symbioses and their habitats 

Chemosynthetic symbioses were first discovered at deep sea hydrothermal vents along the 

Galapagos Rift in the Pacific Ocean in 1977 [301]. There, tube worms and mussels that live in 

symbiosis with chemosynthetic symbionts form vast communities [302], which, at the time, 

were unexpected to exist in the nutrient-poor deep sea. Soon, the presence of intracellular 

sulfur- and methane oxidizing symbionts, and their significance to the animals’ nutrition was 

recognized (reviewed in [52, 53]).  

Since then, chemosynthetic symbioses have been found in many diverse habitats, including cold 

seeps, whale and wood falls, shallow water sediments in association with coral reefs, mangroves 

and seagrasses, and muddy sediments along continental slopes (Figure 7). To date, hundreds of 

species from six different animal phyla and two groups of ciliates have been identified (Figure 7, 

a selection of prominent examples also listed in Table 7, p. 39). 

Likewise, the phylogenetic diversity of chemosynthetic symbionts is very high, because many 

symbionts are host lineage- over even host species-specific [52, 130]. Some hydrothermal vent 

polychaetes (Alvinella), shrimp (Rimicaris) and snails (Alviniconcha) associate with 

chemosynthetic Epsilonproteobacteria [303, 304, 305], but most chemosynthetic symbionts 

(SOX as well as MOX) are from various clades within the Gammaproteobacteria (Figure 8, p. 42). 

Chemosynthetic symbionts form several well-separated clades that often contain free-living 

bacteria as well (Figure 8). The fact that many symbiont clades are more closely related to free-

living bacteria than to other chemosynthetic symbionts is evidence that chemosynthetic 

symbioses independently arose numerous times [52]. Chemosynthetic symbionts are not only 

phylogenetically diverse, but also employ many different chemosynthetic pathways for CO2 

fixation, transmission strategies (from horizontal to strictly vertical, [147]) and modes of 

association (from epibionts and extracellular ectosymbionts to intracellular endosymbionts, [53]).  
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Figure 7: Overview of the diversity of host animals that form chemosynthetic symbioses and the 
range of marine habitats they occur in. Adapted from [52]. 

Figure 8 (next page): Diversity of gammaproteobacterial 16S rRNA phylotypes of chemo-
synthetic symbionts associated with animal and ciliate hosts. Distinct chemosymbiotic clades are 
numbered with roman numerals. Adapted from [52]. 
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1.5 Gutless oligochaete chemosynthetic symbioses 

The first gutless oligochaete species, Phallodrilus albidus (now Olavius albidus), was described as 

early as 1977 by Jamieson [306]; however, the two most outstanding characteristics of this 

animal, i) the lack of a gut and ii) the presence of bacterial symbionts, were not detected at the 

time. The presence of symbiotic bacteria and the chemosynthetic and nutritional nature of the 

symbiosis were recognized just a few years later, around the same time the chemosynthetic 

nutritional symbiosis of the deep sea hydrothermal vent tube worm Riftia pachyptila was 

discovered [307, 308, 309, 310]. Since then, a wealth of morphological, ecophysiological, 

taxonomical, and, in recent years, molecular studies have uncovered a highly diverse and 

complex symbiotic system unlike any other in the world of marine chemosynthetic symbioses. In 

the following, I will review the current knowledge on gutless oligochaetes, with particular 

emphasis on the model species Olavius algarvensis, which is the focus of this thesis. 

1.5.1 Morphological characteristics of the gutless oligochaete symbiosis 

The gutless oligochaetes are small marine annelids within the family Phallodrilinae (Clitellata) 

that inhabit the interstitial pore water of marine sediments [311]. Their bodies are very thin and 

elongated (0.1-0.2 mm in diameter and 10-40 mm in length); a morphology that is well adapted 

to life in the interstitium and that is typical for interstitial meiofauna in general [312]. Gutless 

oligochaete species are morphologically very similar to each other and hard to distinguish even 

for experienced taxonomists. Species are distinguished morphologically mainly by features of 

the genital organs and the presence, shape and number of penial setae [313].  

The gutless oligochaetes are highly unusual in that they not only lack a digestive tract (no mouth, 

gut, and anus), but also nephridia (excretory organs) [308]. Instead they harbor large amounts of 

bacterial symbionts (constituting ~25% of the worm’s biomass [314]), which provide the host 

with nutrition through chemoautotrophic carbon fixation, and which also recycle host waste 

products [59]. Although the cuticle is permeable for compounds at least up to 70 kDa ([311], and 
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the worms do show some potential for the uptake and utilization of dissolved organic 

compounds if supplied externally [315, 316], it seems safe to assume that under most 

circumstances, the symbionts contribute most if not all of the nutrition, and that the symbiosis is 

thus obligate at least for the host [311]. 

Easily distinguished from other meiofauna by eye, the gutless oligochaetes are further 

characterized by their unusual bright, chalky-white color (Figure 9, A and B), which stems from 

large amounts of light-reflecting sulfur and PHA granules stored inside the sulfur-oxidizing 

symbionts [306, 308]. PHA (polyhydroxyalkanoate) is a polymeric carbon and energy storage 

compound in bacteria [317], and in gutless oligochaetes, PHA can contribute up to 10% of the 

total worm dry weight [318]. When these storage compounds get depleted, the worms lose their 

white coloring and turn beige-transparent (called “pale”, Figure 9D [319]).  

All gutless oligochaete species harbor at least two morphological types of bacterial 

endosymbionts that are discernible in TEM images [308, 310]: a) a large (2-7 μm) oval 

morphotype containing large amounts of the aforementioned inclusions which give rise to the 

white color of the worms, and b) a much smaller (0.7-1.5 μm) rod or croissant shaped  

  

 

 
Figure 9: Morphology of gutless oligochaetes. A) Mature Olavius algarvensis worm, arrow 
indicates location of genital pad, image courtesy of Alexander Gruhl, B) TEM image of primary 
SOX symbiont in O. algarvensis showing storage granules, image courtesy of Nikolaus Leisch, C) 
Collection of “white” gutless oligochaetes, D) Collection of “pale” gutless oligochaetes. Images C) 
and D) are courtesy of Christian Lott. E) Cross section of O. algarvensis stained with symbiont-
targeting FISH probes (green: Gammaproteobacteria, red: Deltaproteobacteria) showing the 
location of the symbionts between the epidermis and the cuticle. Adapted from [320]. 
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morphotype with no or fewer inclusions [311]. The bacterial endosymbionts occur extracellularly 

along the entire length of the worm between the cuticle and the epidermis of the worm, but the 

two morphotypes are not evenly distributed. The first anterior segments of the worm up to the 

clitellar region which contains the genital organs (segments XI - XIII) only contain the smaller 

morphotype in low numbers, and as a result this part of the worm is always pale (Figure 9A). The 

postclitellar part of the body is colonized by both morphotypes and thus usually appears white.  

On the ventral side of the genital segments is an area where the space between epidermis and 

cuticle is much wider than in other parts of the body. This area is called the genital pad. It 

appears bright white in sexually mature worms, because it is densely filled with symbiont cells of 

both morphotypes in reproductively active worms (Figure 9A). The genital pad is implicated in 

the transmission of symbionts from the parent worm to the egg (see section 1.5.4).  

Gutless oligochaete symbionts are generally described as being extracellular endosymbionts. 

However, the accuracy of this description has been previously challenged for the following two 

reasons [321, 322]. First, depending on the host species, the symbionts can be engulfed and 

reside inside epidermal vacuoles, thus becoming de facto intracellular [321]. It is unknown if 

these symbionts are able to persist within epidermal vacuoles for longer periods of time before 

eventually being lysed, and this may vary considerably between host species. Second, when 

extracellular, the symbionts are i) subject to environmental influences due to the permeable 

nature of the host’s cuticle and ii) have not invaded any host tissue or crossed tissue boundaries. 

Since both points are of biological significance, it needs to be considered when drawing general 

conclusions by comparing these symbionts to “true” endosymbionts which are permanently 

housed within host tissues (e.g. the intracellular endosymbionts of aphids [35] or extracellular 

endosymbionts of earthworms [253]).  
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1.5.2 Biogeography and ecology of gutless oligochaetes 

Gutless oligochaetes are a significant part of the marine meiofauna in many tropical and 

subtropical sediments throughout the world (Figure 10) [311], and can reach densities of 

100,000 individuals per m2 in some locations [323]. Most species are described from warm 

shallow water coastal sediments (e.g. [324, 325, 326]), where they are easy to find and collect, 

but some species have also been found in colder continental shelf sediments up to a depth of 

583 m [327, 328].  

Typical habitats of gutless oligochaetes are subtidal calcareous sediments associated with coral 

reefs, where the highest numbers are found in heterogeneous sand of varying grain sizes that 

has collected in depressions between coral blocks ([329] and personal observation). There, 

anoxic and sulfidic conditions develop within the first few millimeters of the sediment surface 

due to microbial respiration of organic material. Most worms are found within 5 to 15 cm depth, 

avoiding both completely oxic and highly sulfidic zones [329].  

Other environments include anoxic and sulfidic shelf sediments composed of soft, muddy 

material in depths of 100-400 m [327, 328] and coarse, oligotrophic, non-sulfidic siliceous or 

calcareous sediments associated with seagrass meadows ([321], discussed in more detail in the 

context of symbiont metabolism in section 1.5.5).  

The biogeographical pattern of gutless oligochaetes is not uniform. Some species are highly 

endemic to a particular location [330], while others are cosmopolitan with wide but disjunct 

distributions (summarized in [331]). Often, several species co-occur at the same site (e.g. [323, 

321]) suggesting a high degree of micro-niche partitioning between species [323]. In many cases 

co-occurring species are more closely related to species from other regions of the world than 

with each other (see section 1.5.3, [130]). This is particularly interesting in light of the fact that 

gutless oligochaetes have limited means of dispersal, as they do not form planktonic egg or  
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Figure 10: Distribution of gutless oligochaetes across the world. Map was generated with 
simplemappr (http://www.simplemappr.net).  Gutless oligochaete species used to generate 
map: O. albidoides (Rottnest Island, West Australia, -31.999, 115.49), I. leukodermatus A 
(Harrington Sound, Bermuda, 32.324, -64.738), I. leukodermatus B (Carrie Bow Cay, Belize, 
16.80243, -88.08213), O. loisae (Heron Island, East Australia, -23.443, 151.913), O. imperfectus 
(Lee Stocking Island, Bahamas, 23.767, -76.1), O. algarvensis (Elba, Italy, 42.80816, 10.14202), O. 
crassitunicatus (continental margin off Peru, -12.73217, -77.13267), I. manae (Lizard Island, East 
Australia, -14.787, 145.452), Inanidrilus ‘Hawaii sp. 1’ (Oahu, Hawaii, 21.394446, -157.714627). 
 

 
larval stages [330]. It is entirely possible that there are gutless oligochaete species that live in 

much deeper and more diverse habitats than currently known, and that these take part in 

bridging this gap.  

Since sulfide is almost always available in gutless oligochaete habitats, it was assumed and 

shown early on that the large symbiont morphotype is thiotrophic and oxidizes the 

environmental sulfide present in its habitat for energy conservation and subsequent inorganic 

carbon fixation [329, 309, 319].  

Most worms inhabit the anoxic and sulfidic layers of the sediment, and are only rarely found in 

the top oxygen-containing layer [329, 45, 331]. Like other marine invertebrates, the worms are 

capable of switching to an aerobic fermentative metabolism for short periods of time [332] but 
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die if exposed to anoxia for several days (unpublished observation in [311]). It is hypothesized 

that the worms migrate back and forth between anoxic and oxygenated layers, taking up oxygen 

and storing it to keep up aerobic respiration for some time under hypoxic conditions (“whale 

hypothesis”). However, the respiratory pigments in these animals and their oxygen-binding/-

storing properties remain to be investigated. The work presented in this thesis significantly 

expands our knowledge on the oxygen-binding proteins present in the model gutless oligochaete 

Olavius algarvensis and gives fresh impetus to the whale hypothesis (chapter 4).  

As stated before, gutless oligochaetes are able to take up dissolved organic compounds from the 

surrounding medium, and such compounds might contribute to the overall nutrition of the 

worms [329, 315]. Previous studies report the presence of dissolved organic compounds in the 

habitats of gutless oligochaetes wherever this has been investigated ([329, 333], Manuel Liebeke 

and Erik Puskas, unpublished results). However, for which species, under which circumstances, 

and to what extent this plays a role remains to be determined. This thesis provides genomic 

evidence that simple carbohydrates from the environment could be used to additionally fuel the 

symbiosis in O. algarvensis via its spirochaete symbiont (chapter 3). 

1.5.3 Diversity and phylogeny of gutless oligochaete hosts and their symbionts 

The diversity of gutless oligochaetes is large. To date, 88 species have been formally described 

(summarized in [334]), but there are many more that still await taxonomic description. A recent 

phylogenetic study by Zimmermann et al. showed the existence of two cryptic species in the 

nominal Olavius imperfectus (Figure 11, p. 51, [130]). As mentioned in section 1.5.1, identifying 

species morphologically is challenging and therefore more such cases might surface as new 

molecular data becomes available. More species are found with virtually every field excursion to 

a new region, suggesting that the true diversity is heavily undersampled. The highest diversity of 

gutless oligochaetes is recorded from coral reef sediments in the Caribbean and the Australian 

Great Barrier Reef, with as many as 18 species described from a single collection site [323]. The 
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gutless oligochaetes are a monophyletic group [313, 335, 336, 337] composed of the two sister 

genera Olavius and Inanidrilus. While the genus Inanidrilus is monophyletic, the genus Olavius is 

paraphyletic and requires revision (Figure 11, p. 51, [130]). Two observations indicate that the 

gutless oligochaetes have recently experienced or are experiencing evolutionary radiation: a) the 

large number of very closely related species comprised within only two genera, and b) extant 

species that represent morphologies ranging from “primitive” to highly derived. 

On the symbiont side, the diversity is even larger, since each gutless oligochaete species harbors 

a species-specific consortium of at least three, and up to six, symbiont phylotypes [311]. Gutless 

oligochaete symbionts fall within three clades of Alphaproteobacteria, four clades of 

Gammaproteobacteria, ten clades of Deltaproteobacteria, and one clade of Spirochaeta (Figure 

12, p. 53, not all clades are shown). Attempts to cultivate of any of the symbionts have so far 

been unsuccessful [338].  

All host species analyzed to date, with the sole exception of Inanidrilus exumae [334], possess a 

primary sulfur-oxidizing symbiont of the Gamma1 clade, which corresponds to the large 

morphotype described in section 1.5.1 (soon to be named Candidatus Thiosymbion (Gruber-

Vodicka et al., in prep.). In I. exumae, this symbiont is replaced by a novel sulfur-oxidizing 

gammaproteobacterial type (Gamma4) which looks morphologically very similar to Gamma1 and 

has so far not been found in any other species [334]. Olavius crassitunicatus possess a Gamma2 

symbiont in addition to Gamma1 [339], and Olavius algarvensis and Olavius ilvae contain a 

Gamma3 symbiont in addition to Gamma1 [340]. The Gamma1 symbionts form a closely related 

monophyletic group related to the Chromatiaceae, together with the sulfur-oxidizing 

ectosymbionts of stilbonematine and intracellular endosymbionts of astomonematine 

nematodes (Figure 12, [130]). It is remarkable that this group of bacteria is able to associate with 

animals from two unrelated animal phyla with likely no environmental intermediates [130].
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Host-switches between gutless oligochaetes and stilbonematine nematodes seem to have 

occurred at least three times [130], raising the question by which molecular mechanism(s) this 

clade of symbionts is able to colonize both host groups, while retaining this high degree of host 

species specificity. As outlined in section 1.3, molecular host-symbiont interactions are largely a 

result of the interplay between microbial molecular factors (MAMPs) and recognition molecules 

of the host immune system, such as lectins. In the stilbonematine nematodes Laxus oneistus and 

Stilbonema majum highly specific c-type lectins called Mermaid proteins seem to be responsible 

for recognition and attachment of their respective species-specific Gamma1 ectosymbionts [341, 

168]. The first insight into the innate immune system of a gutless oligochaete, and its suggested 

role in symbiont recognition and interaction is provided in chapter 4. 

The alpha- and deltabacterial symbionts correspond to the small morphotypes described in 

section 1.5.1. In contrast to the Gamma1/Thiosymbion clade, most of these do not form 

symbiont-exclusive clades, but contain closely related environmental bacteria as well. Within the 

Delta1 and Gamma3 clade, different symbiont phylotypes share their direct common ancestor 

not with each other, but with environmental bacteria (Figure 12), indicating that they were 

repeatedly taken up from the environment by different gutless oligochaete species. In chapter 2, 

I show that the diversity of deltaproteobacterial symbionts in O. algarvensis is even greater than 

previously known, and I present the genomes of two novel deltaproteobacterial symbionts. In 

the case of alphaproteobacterial symbionts, multiple very closely related phylotypes can co-

occur in the same species (e.g. Inanidrilus leukodermatus, Olavius loisae, Figure 12). The 

existence of such closely related symbionts with presumably very similar metabolisms within the 

same host is puzzling because it is expected to cause strong competition for resources. On the 

other hand, if different symbionts are adapted to slightly different micro-niches, they might be 

able to exploit a wider range of resources. So far, three gutless oligochaete species have been 

found that also contain a spirochaete symbiont (Figure 12, [342, 339, 340]). The spirochaete 
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symbionts form a monophyletic clade distinct from any other spirochetes (>95.4% sequence 

identity). Since these spirochetes are found in gutless oligochaetes from diverse geographic 

regions and habitats, they appear to be regular symbionts, independent of geography or niche. 

However, their function is completely unknown. Chapter 3 provides first functional insights into 

the spirochaete symbiont of Olavius algarvensis.  
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Figure 12 (opposite page): Phylogenetic 16S rRNA Neighbor Joining gene tree of primary and 
secondary gutless oligochaete symbionts. Gutless oligochaetes associate with secondary 
symbionts from clades within the Alpha-, Gamma-, and Deltaproteobacteria and Spirochaeta. 
Not all clades are shown (mostly those not yet confirmed by FISH).  
 
 
 

1.5.4 Transmission of gutless oligochaete symbionts 

Since the symbionts are functionally indispensable to the host, their reliable transmission from 

parent worm to offspring is of paramount importance to ensure survival of the next generation.  

This can be achieved through either strict vertical transmission via the germline or through 

highly specific uptake of symbionts from free-living populations or resting stages [147].  

Like other oligochaetes, the gutless oligochaetes are hermaphrodites, i.e. each worm contains 

the full set of male and female genital organs; however self-fertilization is generally not possible 

due to the anatomical arrangement of genitalia [343]. Unusual for oligochaetes, the gutless 

Phallodrilinae only develop a single egg at a time, and the egg is not enclosed inside a cocoon 

after oviposition [343]. Instead, the egg is coated by a sticky mucus sheath during oviposition, 

which later hardens to form a more rigid egg integument [330].  

It was determined through ultrastructural analysis [318, 330] and fluorescence in situ 

hybridizations (FISH, [344]) that the male and female gonads as well as the egg maturing inside 

the worm are free of any bacteria, but that juveniles already contain all symbiont morphotypes 

[318]. It was proposed early on that symbionts are transferred onto the egg surface during 

oviposition: the egg is squeezed through the oviduct and oviporus, rupturing the thin cuticle of 

the genital pad, which releases a large number of symbionts to the environment. It is thought 

that some of these released symbionts infect the freshly lain egg by sticking to the mucus sheath 

that surrounds the egg and subsequently invading it [318, 330, 322]. Since the eggs are 

deposited directly into the sediment and lack a rigid outer shell initially, environmental bacteria 

and symbionts released from other worms could also potentially infect the egg.  
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Schimak et al. recently traced the vertical transmission of 15N-labelled symbionts in 

O. algarvensis from parent worms to eggs and developing embryos [322]. The eggs were 

deposited into native sediment, allowing for potential infection by natural environmental strains. 

All bacterial cells later found in the egg mucus and the developing egg carried the stable N-

isotope label. O. algarvensis harbors a Gamma1, Gamma3, Delta1, Delta4, and spirochete 

symbiont (although the true diversity is in fact higher, see chapter 2). Using specific FISH probes, 

15N-labelled Gamma1, Gamma3 and Delta1 symbionts were clearly identified in various 

developmental stages. These results suggest that at least the Gamma1, Gamma3 and Delta1 

symbionts are vertically transmitted, but do not preclude occasional horizontal transmission 

events. In chapter 2 of this thesis, using genomic approaches, I provide evidence that the 

Gamma1 and Gamma3 are indeed strictly vertically transmitted, but that all other symbionts, 

including the spirochaete, at least occasionally experience horizontal transmission.  

1.5.5 Symbiont metabolism in the gutless oligochaete Olavius algarvensis 

The Mediterranean species Olavius algarvensis is the best studied gutless oligochaete on the 

physiological and molecular level. As is true for all gutless oligochaete symbioses, O. algarvensis 

and its symbionts currently cannot be cultivated in the lab. Therefore, all studies on gutless 

oligochaetes are carried out with specimens collected from the wild, and the methods employed 

are culture-independent (short-term physiological experiments, molecular PCR-based 

approaches, metagenomic and transcriptomic sequencing, metaproteomics, metabolomics, and 

microscopic imaging methods).  

The symbiont community has been intensively characterized using 16S rRNA gene clone libraries 

and FISH [295, 345, 340], and consists of the primary Gamma1 symbiont (OalgG1), a secondary 

Gamma3 symbiont (OalgG3), a Delta1 and Delta4 deltaproteobacterial symbiont (OalgD1, 

OalgD4), and a spirochaete symbiont (OalgS1). Two new symbiont phylotypes are established by 
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the work presented in this thesis (see chapter 2): a second Delta1-related phylotype (OalgD1b) 

and a Delta3 phylotype (OalgD3).  

O. algarvensis was first described from shallow-water sediments off the Algarve coast of 

Portugal [346], and has since been found at several sites in the Tuscan archipelago off the islands 

of Elba and Pianosa [321]. There, the worms occur in a water depth of 6-8 m close to seagrass 

beds composed of Posidonia oceanica [295, 347] (Figure 14, p. 59). Most worms are found in a 

sediment depth of 12 cm, which is usually anoxic (C. Lott, unpublished data in [347]). P. oceanica 

forms large, dense meadows which are anchored in the sediment by an extensive root and 

rhizome system [348]. Underneath, dead, decaying rhizome material builds an impenetrable mat 

of ligneous peat. This peat is often found buried under the sediment where the worms occur 

(Figure 14). It is currently unknown if the sea grass meadow or peat also harbor gutless 

oligochaetes, due to their impervious nature.  

The Elba sediments are unusual habitats for gutless oligochaetes, because they are oligotrophic, 

i.e. poor in nutrients and inorganic energy sources such as sulfide that fuel chemosynthesis (see 

section 1.4). Reduced sulfur compounds, phosphate, ammonium and nitrate are present only at 

nanomolar concentrations, if at all (summarized in [347]). It was shown that in O. algarvensis, 

the deltaproteobacterial OalgD1 symbionts provide reduced sulfur compounds to the 

chemosynthetic sulfur-oxidizing OalgG1 symbionts internally, eliminating the need to take up 

reduced sulfur compounds from the environment [295].  

In 2006, draft genomes of OalgG1, OalgG3, OalgD1 and OalgD4 were obtained in one of the first 

large-scale metagenomic studies, at the time still performed through massive parallel end 

sequencing of fosmid clones using Sanger technology [59]. This study provided fundamental new 

insights into the metabolism of the O. algarvensis symbionts, showing that the OalgG3 symbiont 

is a sulfur-oxidizing chemoautotroph like OalgG1, but uses nitrate instead of oxygen as a  
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Figure 14: Geographic location of Olavius algarvensis worms and their habitat. A) The Island of 
Elba is located in the in the Tyrrhenian Sea, west of Italy, B) O. algarvensis specimens are found 
near seagrass beds close to the coast of Elba and Pianosa; shown here are sampling sites on Elba 
in the Bay of (C) Sant’ Andrea and (D) Cavoli, E) Gutless oligochaetes occur in depths of ~8 m 
water depth; shown here is a usual sampling site in Sant’ Andrea Bay, F) Schematic 
representation of the habitat structure. Worms typically occur in medium- to coarse grained 
sands close to beds of the seagrass Posidonia oceanica. This seagrass forms large peat-like 
structures composed of living root and rhizome material covering older rhizomes that have died 
off. Throughout the bay, mats of dead seagrass peat can be found buried underneath the 
sediment inhabited by the worms. A), B), C), D) Google Maps, E) Photo courtesy of the HYDRA 
Institute, F) Adapted from [349].  
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Figure 15: Metabolic model of the O. algarvensis symbiotic consortium. 
Schematic is based on the metagenomic study by [59] and the metaproteomic study by [60]. 
OalgD1 and OalgD4 are shown as single entity, because of their functional similarity. 3-HPB, 
partial 3-hydroxypropionate bicycle; CM, cell material; CODH, aerobic or anaerobic carbon 
monoxide dehydrogenase; NiRes, nitrate respiration; OxRes, oxygen respiration; PHA, 
polyhydroxyalkanoate granules; S0, elemental sulfur; Sred, reduced sulfur compounds; SulOx, 
sulfur oxidation; Unk. TEA, unknown terminal electron acceptor. Adapted from [60].  
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terminal electron acceptor. It confirmed that the deltaproteobacterial symbionts OalgD1 and 

OalgD4 are sulfate-reducers that engage in an internal syntrophic sulfur cycle with the 

gammaproteobacterial SOX symbionts. It further showed that both OalgG1 and OalgG3 fix CO2 

via the Calvin cycle using energy derived from sulfide oxidation [59]. The study also revealed that 

OalgG3 and OalgD1 are able to recycle energy- and nitrogen-rich waste products of the host, 

such as fermentation end products and nitrogenous waste compounds (Figure 15). It further 

suggested that OalgD1 can use H2 as an energy source. 

The expression of these metabolic pathways was confirmed to in a metaproteomic study by 

Kleiner et al. in 2012 [60]. In addition, this study discovered that the gammaproteobacterial 

symbionts employ a modified, more energy efficient version of the Calvin cycle, and that OalgG1 

is able to assimilate short chain fatty acids derived from host fermentation into PHA as an 

energy and carbon store. Both deltaproteobacterial symbionts as well as OalgG3 highly 

expressed carbon monoxide dehydrogenase, suggesting that they use CO as an energy source. 

Indeed, it was shown that high concentrations of carbon monoxide (and also H2), present in the 

habitat of the worms, are sufficient to fuel symbiont metabolism [349]. 

The metabolism of the symbionts makes use of two gases that are considered toxic to the 

invertebrate host. Hydrogen sulfide blocks cytochrome oxidase c of the mitochondrial 

respiratory chain and also has a detrimental effect on other enzymes [350]. Carbon monoxide is 

an important energy source for most of the symbionts, but carbon monoxide strongly binds to 

hemoglobin, the suspected respiratory pigment in the worms, severely cutting oxygen 

availability. In chapter 4 of this thesis, I show that the host might be adapted to the presence of 

sulfide and carbon monoxide though the expression of respiratory proteins that bind or are 

insensitive to these gases.  
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Kleiner et al. showed, that the seeming functional redundancy of the gammaproteobacterial 

symbionts only exists at the surface, and that in reality, they fulfill similar, but different roles, 

making full use of the available resources. In this thesis, I obtained near complete genomes of 

OalgD1 and OalgD4, as well as two novel deltaproteobacterial symbionts in O. algarvensis. 

Combinations of these deltaproteobacterial symbionts often coexist within the same worm, and 

they also appear to be functionally redundant on the surface. Further studies will show if these 

too are able to make use of subtle differences in available resources.  

The metabolism of the spirochaete has so far remained completely unknown due to the 

difficulty of obtaining genomic information from this relatively low abundant symbiont. In this 

thesis, I obtained the first draft genome of this symbiont and describe its potential metabolic 

capacity in chapter 3.  

 

1.6 Aims of the thesis 

This thesis focuses on the symbiosis between the gutless oligochaete species Olavius algarvensis 

and its chemosynthetic bacterial consortium. It investigates the relationship between host and 

symbionts on a population genetics, evolutionary, metabolic and physiological level. The first 

part examines the population structure of O. algarvensis in its Sant’ Andrea habitat, and deals 

with the diversity and flexibility of the associated symbiotic consortium, and the evolutionary 

relationships between host and symbionts (chapter 2). The second part describes the metabolic 

capabilities of the spirochaete symbiont, for which genomic information has so far been lacking 

(chapter 3). The last part of the thesis focuses on the physiological adaptations and 

immunological mechanisms that enable the host to live in such close association with a highly 

diverse symbiont consortium (chapter 4). 
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1.6.1 Host-symbiont population structure and evolutionary relationships 

As outlined in section 1.2, the symbiotic lifestyle has profound effects on the evolution of hosts 

as well as symbionts. When I started out with my PhD, an in depth examination of the large scale 

phylogenetic relationships between gutless oligochaete hosts, stilbonematine/astomonematine 

nematode hosts and their shared primary Gamma1-clade symbionts by Zimmermann et al. was 

underway  [130]. This study sought to resolve the phylogeny of all three groups, with the aim to 

uncover potential co-diversification patterns between hosts and symbionts, to identify possible 

host-switching events of the Gamma1 symbionts between and within oligochaete and nematode 

hosts, and to establish the species-specificity of Gamma1-animal associations. With respect to 

the gutless oligochaete symbiosis, the study confirmed the high species-specificity and showed 

that despite this specificity, host and symbiont phylogenies showed only weak congruence, 

indicating that host-switches are frequent in gutless oligochaetes over long evolutionary 

timeframes (see Figure 11 in section 1.5.3). Co-divergence patterns where only found in gutless 

oligochaete sister species or sub-species that were relatively young, indicating that different 

patterns of co-evolution and host-switching exist on smaller evolutionary timescales. Also, this 

study was exclusively concerned with the Gamma1/Thiosymbion clade, since only this clade of 

symbionts is shared between the two host groups.  

A major aim of this thesis was to examine the evolutionary patterns of symbionts within a single 

gutless oligochaetes on a short-term, i.e. population genomics scale, in order to better 

understand i) the population structure of the host and the within-worm population structure 

and diversity of the symbionts, ii) the presence of co-evolutionary tendencies or the lack thereof, 

depending on symbiont species, and iii) the implications of the observed patterns for symbiont 

transmission fidelity and host-symbiont (co-)evolution,  (co-diversification) and speciation. The 

research concerning this aim is in the process of being published and is therefore presented in 

the form of a self-contained manuscript in chapter 2. 
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1.6.2 Characterization of the metabolic capabilities of the spirochaete symbiont 

Metagenomic Sanger sequencing of Olavius algarvensis fosmid clones by [59] in 2006 lead to the 

assembly of draft genome sequences for four out of the five symbionts that were known at the 

time. No genome sequence could be obtained of the spirochaete symbiont, leaving its metabolic 

potential and putative role within the symbiosis completely unknown. The metagenomic data 

generated in this thesis allowed the assembly of an essentially complete genome draft of the 

spirochaetal symbiont. I functionally analyzed its genome to gain insight on the metabolic 

potential and function of this symbiont in the symbiosis. This research is in the process of being 

published and therefore presented in the form of a manuscript in chapter 3. 

 

1.6.3 Molecular mechanisms that enable the O. algarvensis symbiosis 

The metagenomic analyses carried out in this thesis revealed that O. algarvensis not only 

harbors an even higher diversity of secondary symbionts as previously thought, but that the 

symbiont community is also highly variable between O. algarvensis individuals. The secondary 

symbionts which were flexibly associated and showed no co-diversification pattern with 

O. algarvensis are likely horizontally transmitted, at least occasionally. Still, a high specificity is 

maintained and no strain variability could be identified on the 16S level within each symbiont 

group. This raises the question which molecular mechanisms are responsible for selecting and 

taking up these symbionts, and how the host avoids wrongful uptake of closely related 

environmental strains or closely-related symbiont phylotypes of other, co-occurring gutless 

oligochaete species. Previous to this thesis, no information was available on the molecular 

mechanisms that might enable the host to initiate, establish and maintain these highly specific, 

yet flexible associations. Therefore, another aim of this thesis was to identify and characterize 
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genes of the host immune system that might play a role in these processes, using 

metatranscriptomics and metaproteomics.  

In addition, previous studies on the metabolism of the symbionts established that the 

deltaproteobacterial symbionts produce endogenous sulfide [295] and that the 

deltaproteobacterial symbionts and OalgG3 use environmental carbon monoxide as an energy 

source. Both gases are toxic to animals [351, 352, 350]. Further, the host must endure frequent 

periods of anoxia to accommodate the anaerobic metabolism of its secondary symbionts. 

Another aim was therefore to analyze the transcriptomes and proteomes with respect to the 

physiological adaptations that allow the host to life in association with these symbionts. The 

research of this aim has been submitted for publication and is therefore presented in this thesis 

in the form of a manuscript in chapter 4.  
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Abstract 

Gutless oligochaetes are a monophyletic group of small marine annelids comprising more than a 

hundred described species. They lack digestive and excretory organs and instead, harbor a species-

specific consortium of chemoautotrophic primary and secondary symbionts which provide nutrition 

and recycle waste products. Often, several morphologically uniform species co-occur, thriving in the 

same sediment interstitial habitat. What drives the diversification of this group and what allows 

many of the species to share what appears to be the same ecological niche is unknown. In this study, 

we extensively characterized the symbiotic community in the model species Olavius algarvensis using 

PCR screening and high throughput metagenomic and -transcriptomic sequencing to investigate how 

its obligate symbiont community might influence gutless oligochaete evolution and vice versa.  

We found that the community of secondary symbionts in O. algarvensis is highly diverse, flexible and 

shows little to no congruence with host mitochondrial genome evolution, suggesting frequent host 

switching events and metabolic versatility. In contrast, the primary symbiont has clearly co-diverged 

together with its host into two main haplogroups/phylogroups, suggesting strict vertical transmission 

through the maternal line. Divergent and reductive genome evolution in the primary symbiont is 

apparent in lineage-specific loss of multiple functional genes involved in carbon and energy 

metabolism as well as molecular interaction with the host. These observations demonstrate how 

symbiont genome evolution is influenced by host association and different modes of transmission, 

and how, in turn, they can shape and differentiate the ecological niche of their host, and, on a larger 

evolutionary scale, could provide the genetic foundation for host diversification, speciation and 

species co-existence.  
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Introduction 

The majority of animals form intimate and beneficial associations with microbial symbionts that 

significantly contribute to their health, nutrition, and their development [1, 2]. Many of these 

associations are stable over time and are transmitted between host generations with confidence [3], 

which is often reflected in strong congruence between host and symbiont marker gene phylogenies 

[4]. Two of the many examples of high host specificity and transmission fidelity include the 

chemosynthetic ectosymbionts of stilbonematine nematodes [5], which are acquired anew in each 

host generation and each host molting event, and the obligate intracellular endosymbionts of aphids, 

the latter almost perfectly mirroring the phylogenetic history of their hosts [6].  

As animals and their associated microbes often share a long history together, they have profoundly 

shaped each other’s biology over the course of evolution. For one, animals had to evolve molecular 

mechanisms to specifically recognize and interact with their symbionts and to reliably transmit them 

from parent to offspring [7, 3]. In addition, they often underwent substantial morphological, 

physiological and/or behavioral changes in adaptation to the symbiotic lifestyle, e.g. developing 

tissues to specifically house the symbionts [8, 9, 10], modifying the biochemical properties of 

proteins to accommodate symbiont metabolism [11], or developing certain behaviors that ensure 

symbiont transmission to the offspring [12].  

Likewise, the evolution of symbionts is often heavily influenced by selective forces imposed by the 

host animal as well [13, 14]. For example, symbiont genome evolution is greatly influenced by the 

fidelity with which symbionts are transmitted from one host generation to the next, and whether or 

not genetic recombination is possible between subpopulations of symbionts that live either inside 

other host animals or in the environment. Symbionts with a free-living stage usually have relatively 

large genomes that allow them to thrive inside the host as well as in the environment, while strictly 

host associated bacteria tend to have much smaller genomes than their free-living relatives [13, 3]. It 

has been postulated that as symbionts shift their lifestyle from free-living to strictly host-associated, 

their genomes undergo a phase of rapid genome deterioration due to reduced purifying selection in 
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the host environment [15]. The process is characterized by a significant increase in transposable 

elements, the formation of pseudogenes, chromosomal rearrangements and small- to large-scale 

deletions in the early stages of strict host association. Eventually, symbionts which live exclusively 

within a host and do not experience genetic recombination with other populations develop highly 

reduced, AT-rich genomes without transposable elements [16]. Examples of this include the highly 

reduced genomes of obligate intracellular insect symbionts [17] and the chemosynthetic 

endosymbionts of clams [18].  

While it is clear that animals and their symbionts have fundamentally influenced each other’s 

evolution, there is considerable debate on how much symbionts contribute to the diversification and 

speciation of their animal hosts [19, 20]. Speciation requires, in essence, that barriers to gene flow 

are established, which prevent or at least significantly reduce successful interbreeding between 

populations [21].  Such barriers can be created through divergent ecological or sexual selection, 

which render hybrids unfit to their environment or unattractive to putative mates, or through 

genetic incompatibilities resulting from genetic drift or genomic conflict that leave hybrids unviable 

independent of environmental or sexual interactions [22]. Since beneficial symbionts significantly 

influence the ecology, health, development and behavior of most animals [1, 2] they could 

potentially play an important role in host speciation as well, by influencing any of the mechanisms 

that cause reproductive isolation.  

Evidence that microbial symbionts influence host speciation in many different animal groups is slowly 

accumulating. Some bacterial symbionts of arthropods, like Wolbachia, Cardinium and Spiroplasma, 

significantly reduce gene flow between infected and uninfected host populations by interfering with 

host reproduction in various ways, and are thus heavily implicated in the speciation of many species 

[23, 24, 25]. In insects and vertebrates, it was shown that bacterial symbionts might also promote 

host speciation by influencing mate choice behavior [26, 27] or by highly reducing the fitness of 

hybrids due to immune conflicts [26, 28]. Many symbionts confer important phenotypic traits that 

allow a host to exploit resources that would otherwise be inaccessible, e.g. by synthesizing essential 
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nutrients lacking from the host’s diet [29] or allowing hosts to better endure environmental stressors 

[30]. Symbiont-facilitated adaptation to a new habitat or resource may therefore result in ecological 

speciation [31, 19]. 

Gutless oligochaetes (Annelida; Clitellata; Phallodrilinae) are a highly diverse group of marine annelid 

worms that live in obligate nutritional association with multiple bacterial symbiont species [32]. The 

influence of the symbionts on the evolution of their hosts is apparent, as these worms completely 

lack a digestive and excretory system, and instead rely on their symbionts for nutrition and waste 

removal [33, 34]. Each host species carries a stable, species-specific set of symbiont phylotypes that 

are closely related to, but not shared with any other species [32, 5]. The gutless oligochaetes are very 

speciose, but morphologically uniform. Several superficially identical species often co-occur at the 

same site [35], raising the question of how such diversity has evolved and how it is maintained within 

the same habitat. It is tempting to speculate that it is the symbionts that play a critical role in 

metabolic resource partitioning and diversification of this oligochaete group.  

To better understand the evolutionary relationships between a gutless oligochaete host and its 

symbionts and to examine how the symbiotic community might influence gutless oligochaete 

diversification, we chose the model species Olavius algarvensis for our investigations [36, 33, 34]. 

This Mediterranean species harbors a bacterial consortium of two gammaproteobacterial, two 

deltaproteobacterial and one spirochaetal symbiont. We used host mitochondrial cytochrome c 

oxidase (COI) and symbiont 16S rRNA genotyping to extensively characterize the host and primary 

symbiont population at one collection site on Elba where they abundantly occur.  Furthermore, we 

sequenced the metagenomes of 22 individual O. algarvensis worms collected from this and one 

other site to study the recent evolutionary history of this species with its symbionts, to gain insights 

into the transmission fidelity of the symbionts, and to trace divergent evolutionary tendencies within 

the symbiont population that might promote host niche differentiation and diversification.  
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Materials and Methods 

Specimen collection 

Sediment containing O. algarvensis worms was collected at 7 meters water depth from the Bay of 

Sant’ Andrea, Elba, Italy (42°48'26"N, 010°08'28"E), in November 2010, November 2011, March and 

June 2012, June 2013, August 2014, and August 2015. The worms were extracted from the sediment 

by decantation with seawater, rinsed in sterile-filtrated seawater (2 μm pore size, Millipore, 

Darmstadt, Germany), briefly tapped on blotting paper to remove excess liquid, and either flash-

frozen in liquid nitrogen, or fixed in RNAlater Stabilization Solution (Ambion, Thermo Fisher Scientific, 

Waltham, USA) at 4 °C overnight, then kept frozen at -80 °C until further use. Live worms for the 

incubation experiment were collected from Sant’ Andrea sediment in the same manner, and were 

kept in washed Elba sediment for up to two weeks until further use.  

DNA extraction 

Two gutless oligochaete species, O. algarvensis and O. ilvae, co-occur in Sant’ Andrea. They are 

morphologically indistinguishable unless reproductively active. To determine species affiliation of 

individual worm specimens and for genotyping the target species O. algarvensis, worms used for 

metagenomic and metatranscriptomic sequencing were PCR screened prior to whole worm 

DNA/RNA extractions as follows. A small piece was removed with a sterile scalpel from the anterior 

tip of each RNAlater-fixed specimen. DNA for PCR screening was obtained from each piece through 

homogenization with a sterile disposable plastic pistil (VWR International, Darmstadt, Germany) in a 

1.5 ml reaction tube and heating to 70 °C for 10 minutes and then used directly as template for 

amplification.  

DNA for metagenomic sequencing and COI/16S rRNA gene sequencing was extracted from individual 

whole worms using the DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany). Frozen worms were 

thawed in 180 μl buffer ATL with Proteinase K @ 55 °C for 10 minutes, and then incubated for up to 

six days at 37°C until the worms were completely dissolved, to maximize DNA yield. Subsequent 
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extraction steps were carried out according to the manufacturer’s instructions. DNA for 

metagenomic sequencing of worms used in the incubation experiment was co-extracted together 

with RNA using Qiagen’s Allprep RNA/DNA kit (see below).  

COI/16S rRNA gene amplification, sequencing and analysis 

Host mitochondrial cytochrome oxidase I (COI) sequences were amplified from DNA extracts using 

general primers COI-1490F (5’-GGT-CAA-CAA-ATC-ATA-AAG-ATA-TTG-G-3’, [37]) and COI-2189R (5’-

TAA-ACT-TCA-GGG-TGA-CCA-AAA-AAT-CA-3’, [37]). OalgG1 symbiont 16S rRNA gene sequences were 

amplified using primers OalgG1_644F (5’-TGT-CCG-GCT-AGA-GTG-TGG-TA-3’, which specifically 

targets OalgG1) and GM4R (3’-TAC-CTT-GTT-ACG-ACT-T-5‘, [38]). Target DNA was amplified using 

Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific, Braunschweig, Germany). 1 μl of 

DNA extract was used as template for the PCR reaction. The following thermocycler conditions were 

used: 95°C for 5 min, followed by 35 cycles of 95°C for 1 min, 55 °C (COI) or 58°C (16S) for 1 min, 72°C 

for 1 min, 50 sec and an extension at 72°C for 10 min. PCR products were purified on a Sephadex G-

50 Superfine column (Amersham Pharmacia Biotech, Freiburg, Germany), then directly sequenced 

using the BigDye Sanger sequencing kit (Life Technologies, Darmstadt, Germany) on an Applied 

Biosystems Hitachi capillary sequencer (Applied Biosystems, Waltham, USA). Resulting sequences 

were automatically filtered and quality end-trimmed with Sequencher 4.6 (Gene Codes Corp., Ann 

Arbor, USA) software and aligned with ClustalW [39]. Aligned sequences were manually inspected in 

BioEdit version 7.2.5 [40] to determine host species, host haplotypes and OalgG1 symbiont 

phylotypes. 
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Illumina metagenomic sequencing 

22 O. algarvensis specimens were selected for metagenomic sequencing based on their genotype. 

Illumina TruSeq compatible libraries were constructed with Illumina TruSeq library preparation kit 

according to the manufacturer’s instructions and fragmented to DNA inserts 300-500 bp length. 

Libraries were paired-end sequenced (2x 100 bp) on an Illumina HiSeq2500 (Supplementary Table 1).  

 

Bioinformatic analysis 

Reads were quality filtered and adapter-trimmed using nesoni version 0.114 [41] and corrected for 

sequencing errors using BayesHammer [42], as implemented in Spades version 2.5.1 [43]. 

Metagenomic reads were assembled de novo using idba_ud version 1.1.1 [44]. Symbiont genomes 

were binned using a combined approach of differential coverage binning as described in [45], 

Metawatt version 1.7 [46], and targeted reassembly. Completeness estimates of binned symbiont 

drafts were performed with CheckM version 1.0.1 [47]. Symbiont genome draft assembly metrics 

were determined with QUAST version 2.3 [48]. Reads were mapped to reference sequences with 

bowtie2 version 2.1.0 [49]. 16S rRNA gene sequences were assembled and relative symbiont 

abundances estimated with EMIRGE version 0.6 [50, 51]. Genome bins were automatically annotated 

in RAST version 2.0 [52, 53]. Sequence similarity searches were performed with BLAST 2.2.28+ [54]. 

SNP (single nucleotide polymorphism) analysis was performed with wombac version 1.2 

(http://www.vicbioinformatics.com/software. wombac.shtml) using the draft host mitochondrial and 

symbiont genomes obtained in this study. Neighbor Joining distance transformations and bootstrap 

replications were calculated with SplitsTree4 version 4.13.1, [55]. We used the binned draft genomes 

as mapping references to confirm that particular symbionts are really missing from single worms. 

Mappings were manually inspected in Tablet version 1.15.09.1 [56] to detect the presence of low-

abundance symbionts. Orthologous OalgG1 proteins used for gene set comparisons of symbionts 

from different host haplotypes were identified using ProteinOrtho version 5.11 [57]. Proteins that 

were predicted to be restricted to the symbionts of a particular host haplotype were confirmed to be 
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unique by cross-mapping the metagenomic reads of all specimens onto the gene sequences of the 

respective proteins. Genes were only considered unique to a particular haplotype they did not 

recover reads from metagenomes of the other host haplotype. Average amino acid identity (AAI) 

between closely related symbiont species was determined with the AAI calculator tool implemented 

at http://enve-omics.ce.gatech.edu/aai/ [58], using the protein coding sequences obtained in the 

respective RAST annotations of each symbiont genome bin.  Average nucleotide identities (ANIs) 

between symbiont genomes were calculated using the respective symbiont draft genomes with the 

ANI calculator implemented at http://enve-omics.ce.gatech.edu/ani/ [58]. 

 

Results 

The O. algarvensis population on Elba consists of three host haplotypes with specific primary 
symbiont phylotypes OalgG1 

Olavius algarvensis is a Mediterranean species of gutless oligochaete which is found abundantly in 

the Bay of Sant’ Andrea (North) and in lower abundance in the Bay of Cavoli (South) of the island of 

Elba, Italy (Figure 1, [59]). This species of gutless oligochaete harbors five symbiont phylotypes – two 

Gammaproteobacteria, two Deltaproteobacteria, and one Spirochaeta (Table 1), whose presence has 

been previously confirmed by fluorescence in situ hybridizations (FISH) [59].  

In order to characterize the population structure of O. algarvensis in Sant’ Andrea, we sequenced the 

mitochondrial cytochrome c oxidase I (COI) gene of 380 O. algarvensis individuals collected from the 

Bay of Sant’ Andrea throughout the years 2010 to 2015. We found two COI haplotypes, which 

differed by six consistent SNPs (single nucleotide polymorphisms). We designated them haplotype “A” 

and haplotype “B” (Figure 2A, see Supplementary File 1 for full multiple sequence alignment of all 

380 sequences). Haplotype A always dominated the population in numbers, being approximately 

three times more abundant than haplotype B (295x type A, 85x type B).  
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To investigate if the primary OalgG1 symbiont shows any sequence variation that reflects the host’s 

population structure, we sequenced the 16S rRNA gene (16S) from 60 worms. This revealed that each 

of the two haplotypes is exclusively associated with a specific OalgG1 phylotype (Figure 2A-B, 

Supplementary Figure 1). We named the phylotype specific to host haplotype A “OalgG1-A” and the 

phylotype specific to haplotype B “OalgG1-B”. The OalgG1-A and OalgG1-B phylotypes differed only 

by a single base transition (A<->G) across the 1497 bp long 16S sequence. The same two (and no 

additional) OalgG1 phylotypes were also detected in a 16S clone library generated in 2005 

(Supplementary File 2 [33], 158 sequenced OalgG1 16S clones), which was prepared from a batch of 

600 worms, providing further evidence that only two OalgG1 phylotypes occur in this worm 

population.  

Metagenomic sequencing reveals variability in the secondary symbionts  

In order to investigate the 16S gene diversity and relative abundance of the secondary symbionts and 

how they might be linked to host haplotypes we selected eighteen O. algarvensis specimens 

collected from Sant’ Andrea in the North of Elba (haplotype A: A1-A9, haplotype B: B1-B9) for high-

throughput metagenomic sequencing. We also sequenced four specimens of O. algarvensis obtained 

from the Bay of Cavoli in the South of Elba, of which three were assigned to haplotype A (A10 - A12) 

and one was assigned to the new haplotype C (C1). This new phylotype differed at four single base 

positions in the COI sequence compared to haplotype B from Sant’ Andrea (Figure 2A), and showed 

substantial sequence divergence in the mitochondrial genome sequence (Figure 4). Supplementary 

Table 1 summarizes the number of raw and processed Illumina reads generated from each 

metagenomic library.  

In order to assess the diversity and symbiont phylotype frequency associated with each host 

specimen, we reconstructed full-length 16S rRNA gene sequences and estimated relative symbiont 

abundance in each metagenome using EMIRGE [50] (Figure 3). Very low-abundant symbionts that 
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could not be detected by EMIRGE were independently identified by mapping the metagenomic reads 

back onto the individual symbiont draft genomes, which were also obtained in this study (see below).  

We recovered 16S sequences of both primary SOX symbiont phylotypes, OalgG1-A and OalgG1-B, 

and they were exclusively associated with either host haplotypes A or B, as expected (Figure 3). The 

OalgG1 16S sequences of Cavoli haplotype A worms were identical to the 16S sequence of OalgG1-A 

from Sant’ Andrea. However, the 16S sequence from the Cavoli haplotype C worm differed by four 

single base substitutions from the 16S of OalgG1-B and by three substitutions from OalgG1-A from 

Sant’ Andrea (thus designated OalgG1-C). This 16S divergence reflects the sequence divergence 

pattern observed in the host COI sequences (Figure 2A-B). In contrast, the 16S sequences recovered 

from the secondary SOX symbiont, OalgG3, were identical in all specimens (Supplementary file 3). 

Surprisingly, no OalgG3 sequences were recovered from specimen A9 (Figure 3). 

We observed a lot of variability in the presence-absence pattern and individual abundances of 

different deltaproteobacterial symbionts across worm specimens. In eight out of eighteen 

metagenomes we detected a deltaproteobacterial phylotype, not previously recognized as a 

symbiont (Figure 2C, Figure 3), which was closely related to the known O. algarvensis symbiont 

OalgD1 (Table 1). The same phylotype had been found in a large clone library containing a mix of 

host species, and was at the time dismissed as contamination [60]. Although the 16S sequence 

identity between this new phylotype and OalgD1 was high (98.79%), the genomes were considerably 

divergent with 81.92 – 82.10% average nucleotide identity (two-way ANI) and 77.88 – 78.63% 

average amino acid identity (two-way AAI) between their protein coding sequences, justifying the 

separation of OalgD1 into two distinct symbiont species. Due to its close relatedness to OalgD1, we 

designated this novel phylotype OalgD1b, and renamed OalgD1 to OalgD1a. Two worm specimens 

(A10 from Cavoli and B2 from Sant’ Andrea) each contained another deltaproteobacterial phylotype, 

which was previously found in a clone library, but also dismissed as a contaminating sequence. This 

phylotype was highly similar to OilvD3 (98.22% 16S sequence identity), a deltaproteobacterial 
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symbiont of the co-occurring gutless oligochaete species Olavius ilvae [59]. The two OalgD3 16S 

sequences differed in two single nucleotide positions from each other, indicating that worms from 

Cavoli might harbor a different strain than worms from Sant’ Andrea. However, with only one worm 

carrying this symbiont per site, this remains to be tested. These phylotypes, which we both named 

OalgD3, contributed significantly (12-17%) to the symbiont community in these two worms (Figure 3). 

All 16S sequences recovered for the OalgD4 symbiont were identical (Supplementary file 4).  

We found no haplotype restriction of any of the deltaproteobacterial 16S variants (apart from 

possibly OalgD3), and thus no haplotype-related 16S pattern. However, we did observe a haplotype-

biased occurrence and abundance pattern in the OalgD1a and OalgD1b symbionts. OalgD1a 

occurred more frequently and with significantly higher abundance in haplotype A worms, while 

OalgD1b was significantly more frequent and abundant in haplotype B worms (Figure 3)(t-test 

OalgD1: P=0.045688; t-test OalgD1b: 0.015941, null hypothesis: symbiont abundance is equal in both 

host haplotypes). Moreover, in worm specimens that harbored both symbionts, either OalgD1a or 

OalgD1b was dominating in abundance, while the other symbiont was heavily marginalized (Figure 3). 

This suggests that growth of OalgD1b is hampered in haplotype A worms in the presence of OalgD1a, 

while growth of Delta1a is hampered in haplotype B worms in the presence of OalgD1b, and that 

these two symbionts cannot both grow successfully within the same worm. When only either 

OalgD1a or OalgD1b were present in the same worm, they reached normal abundance levels, 

independent of the host haplotype they were associated with (Figure 3, see worm A7, B2, B8). 

Individual worms showed high variability with respect to which combination of deltaproteobacterial 

phylotypes they harbored (Figure 3). While most worms contained either OalgD1a, or OalgD1b, or 

both, worm B1 had no OalgD1-like symbiont at all. Worms B6 and B9 did not contain an OalgD4 

symbiont, and only two worms had an OalgD3 symbiont. Overall, it seems that while the presence of 

at least one deltaproteobacterial symbiont type is required, none of the different types are per se 

essential in the symbiosis.  
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All deltaproteobacterial symbiont species were found in at least one worm from each collection site, 

indicating that, in principle, there is no geographical influence on symbiont sets in northern (Sant’ 

Andrea) compared to southern (Cavoli) populations of O. algarvensis (an exception might be OalgD3, 

as mentioned above). All symbiont species also occurred in at least one specimen of each host 

haplotype, indicating that, with the exception of OalgD1a/OalgD1b, there is no conflict or 

incompatibility between haplotypes and symbiont species.  

We recovered 10 phylotypes of the spirochaetal symbiont OalgS1 that differed at the same exact 

four single base positions from each other (Figure 2D). OalgS1 phylotypes that were found in 

multiple specimens were not restricted to a particular host haplotype or location. The average 

nucleotide sequence identity (two-way ANI) between the draft genomes of these phylotypes was 

high (99.74 – 99.85%), and therefore all spirochaete phylotypes recovered in this study will remain 

under the designated name OalgS1.  

In summary, we observed no 16S sequence variability in OalgG3, OalgD1a, OalgD1b, and OalgD4 

symbionts from different worm specimens. Instead, we found high variability in the presence-

absence pattern of these symbionts (in the case of OalgD1a/OalgD1b linked to host haplotype). We 

observed slight 16S sequence variation in OalgG1 that was clearly linked to host haplotype, but not 

geographic location, and some sequence variation in OalgD3 that may or may not be linked to host 

haplotype or geographic location. The OalgS1 symbiont showed the highest 16S sequence variation, 

but without evidence for haplotype or geographic linkage.  

 



Chapter 2 

 
 

79 
 

Phylogenetic SNP trees reveal that both sulfur-oxidizing symbionts are host-linked 

From the metagenomic data, we assembled and binned the host mitochondrial genome and draft 

genomes for each symbiont phylotype. Supplementary Table 2 provides information on the assembly 

quality and completeness of each symbiont draft genome used as reference in downstream analyses. 

Most genomes were assembled to at least 90% completeness.  

In order to elucidate the recent evolutionary history of the symbionts and their host, and to trace 

possible linkage disequilibria between host mitochondrial genome and symbiont genomes, we used 

genomic sequence divergence in the form of SNPs (single nucleotide polymorphisms). We assembled 

and binned symbiont draft genomes from several metagenomes, and used the draft genomes with 

the highest completeness and best assembly metrics as references for read mapping, SNP calling and 

construction of phylogenetic trees from high quality core SNPs.  

Based on the phylogenetic SNP tree, the mitochondrial host genomes of Sant’ Andrea separate well 

into haplogroups corresponding to the COI-derived haplotypes A and B (Figure 4A). Two Cavoli 

haplotype A specimens formed a well-supported, but not much divergent, sub-group separate from 

the other haplotype A specimens. The placement of the third haplotype A specimen from Cavoli 

within haplogroup A is not resolved due to low support of its basal node. Overall, haplogroup A 

showed much higher in-group SNP divergence compared to haplogroup B. Within haplogroup B, 

mitochondrial sequences were often so similar that they failed to produce individual branches in the 

tree.  

The phylogenetic SNP tree constructed from OalgG1 SNP data mirrors the host mitochondrial 

phylogeny (Figure 4B). As predicted from OalgG1 16S sequences, OalgG1 separated into three 

distinct phylogroups (A, B, and C) according to the haplotypes of their respective hosts. In contrast to 

the host, OalgG1-A from Cavoli formed a subgroup within phylogroup A that was well-supported 

(bootstrap value >99%). While the mitochondrial haplogroup A showed higher SNP divergence than 
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haplogroup B, OalgG1 showed the opposite pattern, with phylogroup B being more divergent than 

phylogroup A.  

While all 16S rRNA sequences of the OalgG3 symbiont were identical, the SNP based phylogeny of 

the OalgG3 symbiont revealed that it separated into distinct clades, which partially mirrored the host 

mitochondrial phylogeny (Figure 4C). All OalgG3 from Sant’ Andrea haplotype B worms fell into a 

well-defined clade that was distinct from all other OalgG3. The other Oalg3 fell into several clades 

without a clear pattern emerging (Figure 4C). Interestingly, the OalgG3 from the Cavoli haplotype C 

worm fell into a well-supported clade with two of the Cavoli haplotype A OalgG3, possibly showing a 

recent haplotype switch of OalgG3.  

The SNP based phylogenetic trees of the deltaproteobacterial and spirochaete symbionts were 

incongruent with host mitochondrial phylogeny (Figure 4D to G). Together with the presence-

absence pattern described above, this indicates that these symbionts are not strictly linked to a 

particular host haplotype. 

The genomes of the primary symbiont phylotypes OalgG1-A and OalgG1-B differ in gene content 

Since the primary OalgG1 symbiont showed clear phylogenetic separation according to host 

haplotype on the SNP level, we analyzed the gene content of each Sant’ Andrea OalgG1 genome to 

investigate if these two phylotypes show functional divergence, as well. For this, we first assembled, 

binned and annotated the genomes of OalgG1 from six metagenomes (A1-A3, B1-B3), and identified 

orthologous genes that were present in all OalgG1 genomes of one phylotype, but absent in all 

genomes of the other OalgG1 phylotype. To verify that the absence of genes in one phylotype was 

not simply due to incompletely assembled or binned genomes, and to include all available 

metagenomes in the analysis, the presence or absence of a particular gene was confirmed by cross-

mapping the reads from each metagenome back onto each gene (summarized in Table 2, see 

Supplementary File 6 for individual mapping results).  
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We identified nine genes that were unique to OalgG1-A. Most of these genes coded for hypothetical 

proteins of unknown function (Table 2). Unique to OalgG1-B were 40 genes, which included genes 

involved in DNA modification (methylation and recombination) and energy metabolism (hydrogen 

metabolism, fumarate/nitrate reduction), acetate uptake and two proteins that may play a role in 

adhesion and attachment to host surfaces.  

 

Discussion 

O. algarvensis host haplotype diversity, phylogeny and geographic distribution 

We found in total three host haplotypes, of which two appeared to be restricted to either one of the 

two locations were worms had been sampled, although more specimens from Cavoli need to be 

examined for a conclusive statement. In both localities, haplotype A seems to be the most abundant 

one, suggesting that this haplotype has a higher fitness compared to the other two. The higher 

abundance of haplotype A in Sant’ Andrea has been observed for more than 10 years without 

exceptions, indicating that this haplotype frequency distribution is relatively stable and not due to a 

sampling artifact.  

On the whole mitochondrial genomes, all haplotypes were well separated into distinct sequence 

groups. Haplotype A also showed more mitochondrial sequence divergence compared to haplotype B, 

suggesting that this haplotype has had the opportunity to accumulate more genetic changes over 

time either because it diverged before haplotype B, or because is experiences less purifying selection. 

The mitochondrial sequences were still too conserved to allow distinct separation of haplotype A 

sequences from Sant’ Andrea and Cavoli. However, since we observe a clear linkage disequilibrium 

pattern with the primary SOX symbiont OalgG1, and since the split between OalgG1-A from Sant’ 

Andrea and OalgG1-A from Cavoli is well supported, one could speculate that haplotype A actually 

also partitions into a Cavoli clade and a Sant’ Andrea clade, and that migration of hosts between the 

north and south of Elba is very low. This is in line with the fact that gutless oligochaetes do not form 
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planktonic dispersal or larval stages, but lay single eggs that are tightly attached to sand grains with a 

sticky, mucous substance from which fully developed juvenile worms are hatched [61, 62].  

Linkage disequilibrium in two symbionts suggests vertical transmission  

Since the host does not have a digestive tract or excretory organs (nephridia), it is entirely dependent 

on its species-specific symbionts for survival. The transmission of symbionts from one host 

generation to the next is therefore of paramount importance for the continued existence of the 

species. The results of this study show that each host haplotype is exclusively associated with its own 

OalgG1 16S phylotype, and that switches between host haplotypes have not been observed. This is 

consolidated by the phylogenetic SNP trees which show perfect congruence between symbiont and 

mitochondrial genome phylogeny. One explanation for the observed pattern is that OalgG1 is strictly 

vertically transmitted from one host generation to the next via the maternal line, i.e. together with 

the mitochondria. This is further supported by anatomical features of the genital region which ensure 

that the egg comes into contact with the parent’s symbionts during egg laying [61, 62]. All gutless 

oligochaetes possess a pouch-like bulge of the cuticle, in an area close to the oviporus, called the 

genital pad.  The genital pad is densely packed with symbiont cells and ruptures during egg laying, as 

the egg is squeezed through the very narrow oviduct and oviporus, releasing symbionts into the 

environment. As a result, the freshly lain egg comes into direct contact with parental symbionts, 

which can subsequently invade the egg. Moreover, in a recent study Schimak et al. were able to trace 

the transmission of symbionts labeled with 15N-ammonium from parent worm to offspring, 

suggesting vertical transmission [62]. Exceptionally high numbers of transposase genes were found in 

the symbionts draft genomes of the gutless oligochaete Olavius algarvensis [33] and many were 

abundantly expressed [63], suggesting that these symbiont might have recently become strictly host-

associated [15], and lending further evidence that the symbionts are strictly vertically transmitted. 

The other explanation for the observed pattern would be extremely specific uptake of the correct 

strain from the environment. In theory this would be possible, because, unlike other oligochaetes, 
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the gutless oligochaetes do not produce egg cocoons, but lay their eggs directly into the sediment. 

The freshly lain eggs are initially surrounded by a soft, sticky mucus layer which only hardens into a 

more rigid egg wall later on. Freshly lain eggs could therefore be infected by environmental bacteria 

as long as they are able to traverse the mucus layer and soft egg integument and are not eliminated 

by the innate immune system of the developing embryo. However, no OalgG1-like sequences have 

even been found in the environment, despite extensive sequencing efforts by us and others ([64, 65, 

66], and Wippler, unpublished results). Environmental G1-like sequences have been reported 

previously [67]; however their origin is not clear and could be contamination from host-associated 

G1 sequences. On the other hand, O. algarvensis reproduces seasonally, with a large proportion of 

worms laying eggs at the same time. Symbionts cells released during egg laying may remain 

infectious for a certain period of time and infect eggs from different parent worms, constituting a 

mixed transmission mode.  

Linkage disequilibrium in OalgG3 

We observed a similar pattern of host linkage in the genomes of OalgG3 that was less prominent 

than in OalgG1. OalgG3 genomes from Sant’ Andrea appeared to group according to host haplotype, 

although the cluster was much less defined and showed much more divergence compared to OalgG1. 

However, three of the four OalgG3 symbionts from Cavoli formed a cluster independent of host 

haplotype (the fourth one could not be placed in the tree with confidence; therefore its phylogenetic 

position remains unresolved). This might be explained by a recent host switch. Interestingly, OalgG3 

was missing from one worm, which further suggests that vertical transmission may not be perfect 

and that symbionts may be lost due to bottlenecks in the transmission process.  

Co-diversification with host on a local, but not on a larger evolutionary scale 

It is tempting to assume that, on a larger evolutionary scale, co-diversification of the OalgG1 

symbionts and its host should lead to co-speciation.  At this point, we do not have sufficient data to 

assess how far the haplotypes have diverged on the level of the nuclear genome (i.e. if and how far 
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they have come along the path of speciation). A recent study found only two supported instances of 

co-speciation between a gutless oligochaete and its G1 symbiont [5], while all other gutless 

oligochaete species had G1 symbionts that were more closely related to G1 symbionts from more 

distantly related hosts. Overall, geography seemed to have a higher influence on G1 phylogeny than 

the phylogeny of the host, i.e. G1 from distantly related, but syntopic host species were more closely 

related to each other than to G1 symbionts from more closely related hosts. However, the 

phylogenetic trees presented in the same study show a co-divergence pattern between very closely 

related, cryptic host species and their primary G1 symbiont in two gutless oligochaete species from 

the Caribbean (Inanidrilus leukodermatus and Olavius imperfectus). Taken together, this suggests 

that co-speciation could happen on a local scale, but that ultimately patterns of co-diversification and 

co-speciation are broken up by migration to new sites 

SNP diversity in OalgG1 – phylotype A vs B 

OalgG1-B of Sant’ Andrea shows more diversity on the SNP level than OalgG1-B. This could be an 

indication that the OalgG1-B symbiont has had more time to accumulate SNPs than the A type, 

suggesting that its origin lays further back in time. The fact that OalgG1-A symbionts show relatively 

little SNP diversity could be an indication that they experience more purifying selection than 

OalgG1-B.  

Novel deltaproteobacterial symbiont phylotypes 

In this study, the number of identified symbiont phylotypes is considerably higher than previously 

reported. We found two phylotypes, OalgD1b and OalgD3, which were previously detected in clone 

library, but were dismissed as contamination, rather than than seen as actual symbionts [60]. The 

new phylotype OalgD1b was never identified in previous FISH studies, because the FISH probe used 

targets a 16S rRNA region that is identical in both phylotypes, making differentiation impossible ([59], 

Figure 2C). The fact that these sequences had been found previously indicates that these are real 

symbionts that simply occur in only part of the O. algarvensis population. In addition, as near 
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complete draft genomes have been obtained for these symbionts in this study, future genome 

analysis and comparative genomics with the other deltaproteobacterial symbionts of O. algarvensis 

is now possible.  

Mix-and-match assembly of a non-neutral symbiont community phenotype suggests specific 
function requirements and functional redundancy 

The variability in secondary symbiont presence and abundance suggests a) functional redundancy of 

deltaproteobacterial symbionts to some degree, and b) horizontal transmission or frequent host 

switching. As mentioned above, a recent study by Schimak et al. [62] investigated the transmission 

mode of these symbionts using a labeling experiment. Adult worms, containing maturing eggs, were 

incubated in medium containing 15N-labeled ammonium. Directly after egg deposition, the freshly 

layn eggs were transferred to new incubation vials and incubated for several days in medium that did 

not contain 15N-labeled ammonium. The so incubated eggs were analyzed using FISH and NanoSIMS, 

showing that all symbionts present in the newly hatched and developing eggs carried the 15N label. 

Taken together, the findings of this and our study indicate that these symbionts are neither strictly 

vertically nor horizontally transmitted, but that they are most likely transferred to the next 

generation via both routes, in a mixed-mode transmission. Although horizontal transmission events 

might not be possible to be detected in a laboratory setting (because they do not happen often 

enough) the phylogenetic pattern obtained through SNP analyses reveals that horizontal 

transmission must occur occasionally in order to break the linkage pattern.  

The spirochaete symbiont shows high levels of SNP diversity compared to the other symbionts, but in 

contrast to them, shows no increased distance between samples from Cavoli compared to Sant’ 

Andrea. Both of these findings suggest that the spirochaete symbiont is able to infect worms 

independent from host reproduction, and that there is regular gene flow between the populations 

from Cavoli and Sant’ Andrea. The fact that the OalgD1 SNP tree has some strong outliers could be 

evidence that there are switches with a large population of free-living strains. With respect to the D1 
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clade, closely related environmental strains have been recently sequenced (>99% similarity on 16S, 

Marc Mußmann, personal communication).  

In our study, we found that the secondary symbiont community was more diverse and variable 

between host specimens than previously thought. These results demonstrate the power of 

metagenomics over approaches like 16S rRNA clone libraries and 16S tag sequencing in identifying 

new phylotypes and discovering the true diversity within a microbial community.  

OalgD1 symbionts show host preference without host-linkage 

Although not restricted to one host haplotype, the OalgD1a/OalgD1b secondary symbionts still 

showed a statistically significant host preference, indicating that they grow better within the 

environment of their preferred host type. In worms that contain both symbionts at the same time, 

the “wrong” phylotype was heavily marginalized within the symbiont community and had a much 

lower abundance compared to the other respective phylotype. This sort of incompatibility could be 

the result of increased competition between two symbionts that are phenotypically too similar to 

each, marginalizing the symbiont that is less competitive. Alternatively (or in addition), host factors 

that are better at targeting one of the symbionts over the other (e.g. in phagocytosis efficiency, or 

effectiveness of population-controlling antimicrobials) could play a role.  

The O. algarvensis symbiosis covers a large range of symbiont-specificity 

Even though all symbionts are housed within the same symbiotic region between the cuticle of the 

host and its epidermis, and although the physical route for transmission is essentially the same for all 

symbionts (during egg laying via rupturing of the genital pad and release of symbiont cells to the 

outside), the symbionts display a wide range of host specificity and transmission mode.  

On the one hand, specificity is extremely high in OalgG1, which shows a low amount of SNP 

divergence, very few, well defined phylotype groups, very high congruence with the host 

mitochondrial phylogeny, and has never been observed to switch between host haplotypes. In the 

case of the OalgG3 symbiont, an intermediate pattern is observed, in which some linkage with the 
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host mitochondria is observed, and sequences from host haplotype B show a well-defined, tight 

cluster of sequences, while OalgG3 associated with haplotypes A of Sant’ Andrea and Cavoli  form a 

diffuse cluster with higher sequence variation and possibly host switching events.  

In the case of OalgD4, we observed a cluster without any clear diversification that reflects host 

haplotype, however, with a large outlier genome that had diverged substantially from the “cloud” of 

more similar OalgD4 sequences. OalgD1b showed two defined clades, although they were not 

associated with a particular host haplotype, and only a small amount of sequence divergence. 

Assuming that this symbiont can be horizontally obtained from a free-living population of symbionts, 

the specificity with which this symbiont is taken up is quite high, but allows for some variation. In 

contrast, OalgD1a is more diverged on the SNP level, suggesting that its specificity is lower.  

Several mechanisms might explain these observations. Strict vertical transmission, in which 

symbionts go through a transmission bottleneck each generation and in which no new phylotypes 

are introduced from the environment or other hosts, strain variability is expected to decrease [68]. 

Horizontal transmission, on the other hand, allows for new strains to enter the symbiosis and would 

increase genetic variability. Strong outliers in SNP divergence, as observed in OalgD4 might also point 

to the recent uptake of a novel symbiont strain, while little genetic variation might also be a result of 

a recent selective sweep (and have less to do with transmission mode). Highly specific association 

with a particular phylotype might also be achieved through highly selective recognition and uptake 

mechanisms employed by the host or by imposing selective forces onto the symbiont that not all 

strains are able to handle equally well (e.g. antimicrobials produced by the host).  

Are the two phylotypes OalgG1-A and OalgG1-B functionally diverging? 

We compared the genomes of the primary symbionts from the two host haplotypes found in Sant’ 

Andrea and found that divergent evolution has resulted in exclusive gene content restricted to the 

symbionts of one particular haplotype. Several genes involved in carbon- and energy metabolism, 

host interaction and DNA modification were absent in the primary symbiont of haplotype A, but not 
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haplotype B. Our study shows that the primary symbiont is a hot spot for the evolution of haplotype-

specific gene sets. The absence of certain genes that we identified in this analysis could be the result 

of gene loss and genome deterioration that is predicted to be the result of a lifestyle which restricts a 

symbiont to be exclusively associated with a host [15]. These changes are typical for symbionts that 

are strictly vertically transmitted (appears to be the case for OalgG1) and genetically isolated. The 

latter does not apply to OalgG1, since it occurs together with several symbionts that, according to 

the SNP data, experience occasional exchange with other populations (be they free-living or 

associated with other hosts). Genome deterioration could possibly be further enhanced through the 

extremely high activity of transposase genes in these symbionts [63]. Transposases are enzymes that 

are able to move genetic elements within genomes, and contribute to genome erosion and gene loss 

by i) destroying the function of genes by inserting into them and ii) by inserting regions of high 

sequence similarity into the genome, which are anchors for homologous recombination and the 

deletion of regions between such anchors [69]. Host-linked genome diversification in the primary 

symbiont could lead to differentiation into metabolic niches, which could provide a molecular basis 

for host isolation and ultimately speciation and would allow similar host species to co-exist in the 

same habitat. The fast evolution of symbiont genomes, high flexibility of secondary symbionts, 

together with the low dispersal rate of the host might create local hot-spots for the diversification of 

both hosts and symbionts.  

 

Outlook 

While the results obtained in this study point to clear co-diversification between the host and the 

primary symbiont OalgG1, even on an intraspecific, population level scale, and divergent evolution is 

apparent in the symbiont genome, it is not clear how far the hosts have diverged in terms of their 

nuclear genome, and whether they are in the process of speciation. Future studies should therefore 

focus on investigating divergent evolution within the nuclear genome of the host, in order to assess if 

and how far these two haplotypes have diverged and how this might be influenced by the symbionts.  
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Tables and Figures 

Figure 1: Sampling sites 

Worms in this study were collected from two sites off the Island of Elba, the Bay of Sant’ Andrea 
(North) and the Bay of Cavoli (South). 
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Figure 2: Multiple alignments of host COI and symbiont 16S rRNA gene sequences 
Shown are multiple sequence alignments of the host and symbiont phylogenetic marker genes. For 
full sequence alignments containing all sequences obtained in this study, refer to Supplementary 
Files 1 – 5. 
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Figure 3: Relative abundance of symbionts in each worm metagenome 

Relative estimated abundances of symbionts in each metagenome. Estimated abundances were 
calculated with EMIRGE [50]. HT-A: host COI haplotype A; HT-B: host COI haplotype B, HT-C host COI 
haplotype C. Top grey bar indicates presence of low-abundance symbionts that were not detected by 
EMIRGE and that were manually identified by mapping the metagenomic reads onto the respective 
symbiont draft genomes. 
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Figure 4: SNP distance trees of host mitochondrial and symbiont genomes 

Neighbor Joining (NJ) transformed splits trees based on core SNPs called from read alignments to the 
respective genomes. Asterisks mark edges with >99% bootstrap support from 1,000 replications. 
Scale bar represents 10% SNP divergence, inset scale bars represent 1% SNP divergence. A) host 
mitochondrial genome, tree based on 162 core SNPs, B) OalgG1 symbiont genome, tree based on 
12,779 core SNPs, C) OalgG3 symbiont genome, tree based on 9502 core SNPs, D) OalgS1 symbiont 
genome, tree based on 3421 core SNPs, E) OalgD1a symbiont genome, tree based on 8960 core SNPs, 
F) OalgD1b symbiont genome, tree based on 240,062 core SNPs, G) OalgD4 symbiont genome, tree 
based on 6210 core SNPs. 
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Table 2: Genes unique to A- or G-type OalgG1 symbionts 

Unique to a) Gene ID Gene annotation b) # Reads A c) # Reads Bc) 

A 69204.peg.697 hypothetical protein 618 0 

A 69204.peg.656 hypothetical transmembrane protein  267 0 

A 69204.peg.367 hypothetical protein 584 0 

A 69204.peg.250 hypothetical protein 216 0 

A 69204.peg.2285 HigA protein (antitoxin to HigB) 399 0 

A 69204.peg.1913 hypothetical protein 373 0 

A 69204.peg.1334 hypothetical protein 173 0 

A 69204.peg.1176 Asparagine synthetase  628 0 

A 69204.peg.1 hypothetical protein with DUF4160 (PF13711) 426 0 

B 69208.peg.73 hypothetical protein 0 228 

B 69208.peg.1123 hypothetical protein 0 4452 

B 69207.peg.980 DNA-cytosine methyltransferase 0 1134 

B 69207.peg.912 hypothetical protein with DUF820 (PF05685), restriction 
endonuclease type II-like domain (SSF52980) 

0 1419 

B 69207.peg.883 hypothetical transmembrane protein  0 6930 

B 69207.peg.882 hypothetical transmembrane protein with signal 
peptide 

0 1015 

B 69207.peg.726 hypothetical protein 0 1156 

B 69207.peg.2390 hypothetical protein 0 218 

B 69207.peg.2343 hypothetical protein 0 379 

B 69207.peg.2299 hypothetical protein 0 665 

B 69207.peg.2226 hypothetical protein 0 512 

B 69207.peg.2225 DNA-invertase 0 2256 

B 69207.peg.2201 Hydrogenase maturation factor hoxX 0 363 

B 69207.peg.2186 Rhodanese-related sulfurtransferase 0 1214 

B 69207.peg.2150 Large exoproteins involved in heme utilization or 
adhesion 

0 4229 

B 69207.peg.2114 Fumarate and nitrate reduction regulatory protein 0 2785 

B 69207.peg.1999 hypothetical protein 0 767 

B 69207.peg.1984 hypothetical protein 0 1833 

B 69207.peg.1870 hypothetical protein 0 896 

B 69207.peg.1838 hypothetical protein 0 950 

B 69207.peg.1755 Glycosyl transferase, group 1 0 1478 

B 69207.peg.1731 Polyferredoxin NapH (periplasmic nitrate reductase) 0 2580 

B 69207.peg.1666 hypothetical protein 0 631 

B 69207.peg.1647 hypothetical protein with Beta-
lactamase/transpeptidase-like domain (PF13354, 
SSF56601) 

0 2868 

B 69207.peg.1635 hypothetical protein 0 387 

B 69207.peg.1634 hypothetical protein 0 245 

B 69207.peg.1611 Acetate permease ActP (cation/acetate symporter) 0 4705 

B 69207.peg.1579 hypothetical protein 0 626 

B 69207.peg.1556 hypothetical protein 0 1881 

B 69207.peg.1499 FIG00637371: hypothetical protein 0 783 

B 69207.peg.1498 Carbohydrate kinase, PfkB 0 4084 

B 69207.peg.1469 hypothetical transmembrane protein 0 1292 
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B 69207.peg.1468 hypothetical protein with transposase IS200-like 
domain (PF01797, SSF143422) 

0 123 

B 69207.peg.1467 hypothetical transmembrane protein with signal 
peptide 

0 2253 

B 69207.peg.1374 Dolichol-phosphate mannosyltransferase  0 2628 

B 69207.peg.1242 hypothetical protein 0 548 

B 69207.peg.1239 hypothetical protein with DUF2326 (PF10088) 0 4925 

B 69207.peg.1238 hypothetical transmembrane protein 0 482 

B 69207.peg.1220 Type IV pilus biogenesis protein PilM 0 450 

B 69207.peg.1159 hypothetical protein 0 343 
a) Unique to OalgG1 from host COI haplotype A or B, respectively  
b) RAST annotation, augmented with blast2go domain searches (PFAM, SUPERFAMILY, TMHMM, SignalP4, Phobius) 
c) Number of total mapped reads from all metagenomes of Sant’ Andrea COI haplotype A hosts, or haplotype B hosts 
respectively, using OalgG1 strain-unique genes as target  
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Supplementary Table 1: Metagenome sequencing statistics  

Number of sequenced paired reads in millions 

Worm Site Raw Processed Sequencing center Accession 

A1 Sant' Andrea 111 55 JGI DOE 1021950a) 

A2 Sant' Andrea 77 38 JGI DOE 1021953a) 

A3 Sant' Andrea 170 84 JGI DOE 1021956a) 

A4 Sant' Andrea 2 18 MPIPZ GC Unpubl. 

A5 Sant' Andrea 33 18 MPIPZ GC Unpubl. 

A6 Sant' Andrea 28 16 MPIPZ GC Unpubl. 

A7 Sant' Andrea 33 23 MPIPZ GC Unpubl. 

A8 Sant' Andrea 35 25 MPIPZ GC Unpubl. 

A9 Sant' Andrea 30 17 MPIPZ GC Unpubl. 

A10 Cavoli 36 34 MPIPZ GC Unpubl. 

A11 Cavoli 85 84 MPIPZ GC Unpubl. 

A12 Cavoli 38 38 MPIPZ GC Unpubl. 

B1 Sant' Andrea 84 42 JGI DOE 1021959a) 

B2 Sant' Andrea 107 53 JGI DOE 1021962a) 

B3 Sant' Andrea 90 44 JGI DOE 1021965a) 

B4 Sant' Andrea 33 22 MPIPZ GC Unpubl. 

B5 Sant' Andrea 32 16 MPIPZ GC Unpubl. 

B6 Sant' Andrea 28 16 MPIPZ GC Unpubl. 

B7 Sant' Andrea 32 17 MPIPZ GC Unpubl. 

B8 Sant' Andrea 33 23 MPIPZ GC Unpubl. 

B9 Sant' Andrea 34 22 MPIPZ GC Unpubl. 

C1 Cavoli 34 32 MPIPZ GC Unpubl. 
JGI DOE: Joint Genome Institute Department of Energy 
MPIPZ GC: Max Planck Institute für Pflanzenzüchtung Genome Center 
a) JGI DOE project ID for metagenome retrieval from IMG database 
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Supplementary Figure 1: Haplotype-specific association of OalgG1 phylotypes 

Figure shows multiple sequence alignments of OalgG1 symbiont 16S sequences (left) and of the 
host COI sequences from the same worm specimens (right). Black arrows indicate hidden 
sequence portions.  
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Supplementary file 1: Multiple alignment of host COI sequences from Sant’ Andrea 

-> Contains all host COI sequences obtained in this study through PCR and direct sequencing 

Supplementary file 2: Multiple alignment of OalgG1 16S sequences from clone library 

-> contains all OalgG1 16S sequences from [33] clone library 

Supplementary file 3: Multiple alignment of OalgG3 16S sequences reconstructed from 
metagenomes 

-> contains all 16S sequences of OalgG3 symbionts reconstructed from metagenomes with 
EMIRGE 

Supplementary file 4: Multiple alignment of deltaproteobacterial symbiont 16S sequences 
reconstructed from metagenomes 

-> contains all 16S sequences of deltaproteobacterial symbionts reconstructed from 
metagenomes with EMIRGE 

Supplementary file 5: Multiple alignment of OalgS1 16S sequences reconstructed from 
metagenomes 

-> contains all 16S sequences of OalgS1 symbiont reconstructed from metagenomes with 
EMIRGE 

Supplementary file 6: Confirmation of OalgG1 phylotype-specific genes by read mapping 
analysis 

-> contains a list of putative phylotype-specific genes and the number of mapped reads from 
each metagenome for each gene 
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Abstract 

The family of Spirochaetaceae is mostly known for its members that cause disease in humans 

and other mammals, and to a lesser extent, for the mutualistic symbionts in wood-eating 

termites. Here, we present the near complete genome sequence of the spirochaetal 

endosymbiont OalgS1 of the gutless oligochaete Olavius algarvensis, which is most closely 

related to free-living, non-pathogenic and non-host associated Spirochaeta isolates from marine 

sediments and microbial mats. OalgS1 is an extracellular endosymbiont that lives in a symbiotic 

consortium together with two chemosynthetic sulfur-oxidizing Gammaproteobacteria and 

sulfate-reducing Deltaproteobacteria. OalgS1 is a chemoorganoheterotrophic organism capable 

of fermenting a large number of carbohydrates to acetate and other short chain fatty acids 

(SCFAs), and CO2 + H2. OalgS1, which is located directly beneath the highly permeable cuticle of 

the worm, encodes in its genome a large number of transporters for a wide range of sugars, 

some of which were recently shown to be present in the pore water that the host inhabits. It is 

therefore hypothesized to scavenge simple sugars from the environment and engage in a 

syntrophic relationship with deltaproteobacterial symbionts of O. algarvensis, which are known 

to use SCFAs as an energy and carbon source and H2 as an energy source. We found no 

indication that OalgS1 is pathogenic in healthy worms; in fact, it lacks several of the molecular 

components that typically make pathogenic spirochaetes cytotoxic to host epithelia.   
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Introduction 

The Spirochaetes comprise a group of morphologically unique bacteria that include a number of 

important human pathogens, like the causative agents of Lyme disease, syphilis, epidemic and 

endemic relapsing fever, leptospirosis and periodontal disease [1]. The family Spirochaetaceae 

contains pathogens like Treponema and Borrelia, as well as mutualistic treponeme symbionts of 

wood-eating termites and free-living Spirochaeta that inhabit marine or freshwater sediments 

and microbial mats [2, 3, 4]. Other spirochaetal symbionts have been reported from the 

crystalline styles of bivalve and gastropod digestive tracts [5], from the sponge genus Clathrina 

[6], from the body surface of the marine polychaete Alvinella pompeijana [7], and from three 

species of gutless marine oligochaetes [8, 9, 10]. The Alvinella and gutless oligochaete 

spirochaetes are closely related [10]. However, nothing is known about the physiology of any of 

these spirochaete symbionts and the possible role they might play in their hosts. 

The gutless oligochaetes are a species-rich, monophyletic group of small annelids that inhabit 

the interstitial pore water of marine sediments [11]. All gutless oligochaetes form beneficial, 

obligate associations with chemosynthetic sulfur-oxidizing symbionts that compensate for the 

host’s lack of a mouth, anus and gut by providing most, if not all, of its nutrition though 

autotrophic carbon fixation. In addition to the primary obligate sulfur-oxidizing symbiont (the 

Gammaproteobacterium OalgG1/Gamma1/Candidatus Thiosymbion), which is shared among all 

gutless oligochaete species, the gutless oligochaetes also associate with a number of secondary 

symbionts.  

In the Mediterranean gutless oligochaete species Olavius algarvensis, these secondary 

symbionts comprise a number of different deltaproteobacterial sulfate-reducing bacteria, 

another sulfur-oxidizing Gammaproteobacterium in addition to the Gamma1 symbiont, and the 

spirochaete symbiont OalgS1 mentioned above. While the functions of the gamma- and 

deltaproteobacterial symbionts have been extensively studied and mostly resolved through 
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metagenomic and metaproteomic approaches [12, 13], the role of the spirochaete symbiont 

remains elusive because of its relatively low abundance compared to the other symbionts (< 

10% of the symbiotic community, [10, 12], Wippler et al. 2016 submitted). Using next-generation 

sequencing technology and the high read coverage that comes with Illumina sequencing, we 

were able to assemble a near complete genome of the O. algarvensis spirochaete OalgS1 from 

the metagenomes generated from six O. algarvensis specimens. In this study, we present a 

characterization of the functional repertoire encoded in the OalgS1 genome, compare it to the 

genomic features of other spirochaete genomes and speculate on the putative role of this 

symbiont in the gutless oligochaete symbiosis. 

 

Material and Methods 

Sample collection  

Sediment containing O. algarvensis worms was collected at 7 meters water depth from the Bay 

of Sant’ Andrea, Elba, Italy (42°48'26"N, 010°08'28"E), June 2012. Worms were extracted from 

the sediment by decantation with seawater, and six mature Olavius algarvensis specimens were 

morphologically identified under a dissection microscope. The live worms were subsequently 

rinsed in sterile-filtrated seawater (2 μm pore size, Millipore, Darmstadt, Germany), briefly 

tapped on blotting paper to remove excess liquid, then flash-frozen in liquid nitrogen, and 

stored at -80°C until DNA extraction.  

DNA extraction 

DNA for metagenomic sequencing was extracted from individual whole worms using the DNeasy 

Blood & Tissue kit (Qiagen, Hilden, Germany). Frozen worms were thawed in 180 μl buffer ATL 

with Proteinase K @ 55 °C for 10 minutes, and then incubated for up to six days at 37°C until the 
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worms were completely dissolved, to maximize DNA yield. Subsequent extraction steps were 

carried out according to the manufacturer’s instructions.  

Illumina metagenome sequencing 

Illumina libraries were constructed using the TruSeq Illumina library preparation kit (Illumina, 

San Diego, USA) according to the manufacturer’s instructions and fragmented to 300-500 bp 

insert size. Libraries were paired-end sequenced (2x 100 bp) on an Illumina HiSeq2500 machine. 

Supplementary Table 1 summarizes the number of raw reads generated from each library, the 

number of processed reads used in subsequent bioinformatic analyses. The metagenomic 

sequences have been published under the accession numbers given in Supplementary Table 1.  

Bioinformatic analysis 

Reads were quality filtered and adapter-trimmed using nesoni version 0.114 [14] and corrected 

for sequencing errors using BayesHammer [15], as implemented in Spades version 2.5.1 [16]. 

Metagenomic reads were assembled de novo using idba_ud version 1.1.1 [17]. Spirochaeta 

symbiont genomes were binned using a combined approach of differential coverage binning as 

described in [18] and Wippler et al. 2016 (in prep.). Briefly, an initial spirochaete bin was created 

by identifying contigs that contained conserved spirochaetal markers genes. Further spirochaetal 

contigs were binned from the whole metagenome assembly by retrieving any contigs that were 

connected to the initial bin via paired-end read linkage as described in [18]. This procedure was 

carried out using single metagenomes and a combination of all six metagenomes (co-assembly). 

The assemblies obtained from using only single metagenomic data sets were inferior to the co-

assembly (Supplementary Table 2), and therefore, the co-assembly was used for all subsequent 

functional analyses. Completeness estimates of binned spirochaete symbiont drafts were 

performed with CheckM version 1.0.1 [19]. Symbiont genome draft assembly metrics were 

determined with QUAST version 2.3 [20]. Reads were mapped to reference sequences with 

bowtie2 version 2.1.0 [21]. Read mappings for Figure 4 were visualized in artemis [22]. The draft 
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genome was automatically annotated in RAST version 2.0 [23, 24], which includes the detection 

of CRISPR repeats and spacers. Manual sequence similarity searches were performed with BLAST 

2.2.28+ [25]. Average nucleotide identities (ANIs) between symbiont genomes were calculated 

using the respective symbiont draft genomes with the ANI calculator implemented at 

http://enve-omics.ce.gatech.edu/ani/ [26]. The phylogenetic 16S rRNA Neighbor Joining tree 

was generated with the software package ARB [27]. 

 

Results and Discussion 

Genome properties of O. algarvensis OalgS1 symbiont 

A near complete (96.06%) genome draft sequence of the Olavius algarvensis spirochaete 

symbiont OalgS1 was obtained combining the metagenomic data sequenced from six 

O. algarvensis specimens (Figure 1). Using the individual metagenomic data sets, we assembled 

and binned draft genomes of varying completeness from each worm specimen (Supplementary 

Table 2). A pairwise comparison of ANI (average nucleotide identity) values between these six 

draft genomes, showed that the genomes obtained from the six specimens differed only 

marginally (ANI 99.74 – 99.85%), indicating that the worms are all infected by the same species 

(Supplementary Table 3). Analysis of strain heterogeneity, based on conserved Spirochaetae-

specific maker genes, also suggested that strain variability is very low (Figure 1). Therefore, we 

used the near-complete co-assembly of OalgS1 for subsequent functional analyses. 

The OalgS1 genome is 2.18 Mb large, with a DNA G+C content of 46%. Of the 2022 predicted 

genes, 1975 were protein coding genes, 44 were tRNAs, and 2 were rRNAs. No pseudogenes 

were identified. 54.74% of all coding genes could be annotated with a putative function, of 

which 34% could be integrated into the curated annotation subsystems of the annotation 

pipeline RAST. Table 1 summarizes the genome characteristics of OalgS1 and Table 2 
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summarizes the distribution of genes into RAST subsystem categories. Note that no flagella or 

motility genes are listed in subsystems; however, OalgS1 does encode the regular genes for 

flagella synthesis (Supplementary Table 4). 

Phylogeny and comparison of genomic features to related Spirochaetaceae 

Using the 16S rRNA sequence from the draft assembly as query, highly scoring 16S rRNA 

sequences were retrieved from NCBI with blastn. The top scoring sequence hits were 

Spirochaetaceae of the genera Spirochaeta, Treponema and Borrelia. The 16S rRNA sequence of 

OalgS1 was aligned to spirochaete 16S rRNA sequences representative of the diversity within 

this group, and used to construct a Neighbor Joining phylogenetic tree (Figure 2). OalgS1 formed 

a well-supported monophyletic group with other gutless oligochaete spirochete symbionts and 

was closely related to free-living Spirochaeta members. Strains most closely related to the 

gutless oligochaete spirochetes had mainly been isolated from marine sediments. See Tables 1 

and 2 for genomic and functional comparisons of OalgS1 with other available Spirochaetaceae 

genomes. 

In comparison to other free-living Spirochaeta strains from marine sediments, OalgS1 had a 

much smaller genome, only about half the average size (Table 1). The reduced genome size is 

also noticeable in the reduced number of coding sequences (cds) in the OalgS1 genome. The 

OalgS1 genome was also significantly smaller than that of the termite hindgut symbiont 

T. azotonutricium ZAS-9, and was more similar in size to facultative or opportunistic spirochete 

pathogens (0.9 – 2.8 Mb), including the human dental isolate Treponema denticola, Treponema 

pallidum, the causative agent of syphilis, and Borrelia spp., which cause borreliosis (Lyme 

disease) in humans. In contrast, the DNA GC content was more similar to free-living mesophilic 

Spirochaeta and symbiotic termite isolates, than to the pathogenic spirochaetes. The properties 

and function of OalgS1 within the gutless worm symbiosis were so far not known; however, 

based on the observation that spirochaete-infected worms showed no signs of disease it was 
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Figure 2: Phylogeny of OalgS1 and closely related members of the family Spirochaetaceae. The 
phylogenetic tree was constructed using 16S rRNA sequences of Spirochaetaceae from isolates 
or important host-associated spirochetes (Neighbor Joining, 100 bootstrap replications). 
Sequences are colored by the habitat they were obtained from. 
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assumed that OalgS1 is either a mutualist or a commensal, not a pathogen. The placement of 

OalgS1 within non-pathogenic sediment bacteria provides further evidence that it is not 

pathogenic to its host.  

Metabolic insights from the O. algarvensis OalgS1 symbiont genome 

According to the metabolic pathways encoded in its genome, OalgS1 is a heterotrophic mixed 

acid fermenter, capable of taking up multiple carbohydrate substrates from the environment 

and fermenting them to various short chain fatty acids, like succinate and acetate (Figure 3). 

Compared to parasites like Borrelia, which generally can only utilize fructose and maltose (e.g. 

B. burgdorferi B31, B. afzelii Pko, B. garinii PBi), OalgS1 possesses uptake transporters, and the 

biochemical pathways necessary, to make use of a multitude of different sugars, including 

mannose, maltose, fucose, xylose, melibiose, sucrose and arabinose (Figure 3). The habitat of 

O. algarvensis is oligotrophic and considered to be depleted in dissolved organic carbon 

compounds. As a result, hydrogen sulfide, which normally fuels chemosynthetic sulfur-oxidizing 

symbionts, is rarely detected in the sediment, raising the question of which energy sources feed 

this symbiosis. It was shown that the deltaproteobacterial symbionts are sulfate reducers which 

provide the sulfur-oxidizing symbionts with reduced sulfur compounds in an internal syntrophic 

sulfur cycle [28]. In addition, the gamma- and deltaproteobacterial symbionts are able to 

assimilate and recycle energy-rich metabolic waste products of the host, reducing the energy 

demand of the symbiosis [12]. Although this a perfect adaptation to the oligotrophic 

environment of the host, the symbiosis still ultimately requires external energy sources. Recently, 

environmental hydrogen and carbon monoxide derived from the degradation of seagrass 

rhizome were shown to serve as significant alternative energy sources for some of the symbionts. 

If OalgS1 is able to take up energy rich dissolved carbon compounds like sugars from the 

environment, it might provide an additional source of energy to the symbiosis and reduce the 

need for costly inorganic carbon fixation. Although the sediments are considered to be 
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oligotrophic, it was recently shown that the pore water inhabited by the worms does contain 

surprising amounts of dissolved organic compounds in the μM range, in particular sucrose and 

inositol (Manuel Liebeke, Erik Puschkas, unpublished data). In addition, the cuticle of 

O. algarvensis is permeable for compounds with a molecular weight of at least up to 70 kDa [11]. 

Since the OalgS1 genome encodes many different uptake transporters for various energy-rich 

compounds, in particular sugars, it might be able to scavenge the breakdown products derived 

from the degradation of seagrass material by xylophagous environmental bacteria. The 

spirochaete symbiont would support the energetic needs of the symbiosis by fermenting these 

compounds to short chain fatty acids, like acetate and succinate, which were shown to be used 

as carbon and electron sources by the deltaproteobacterial symbionts. Another observation that 

supports this hypothesis is that the spirochaete symbiont is mostly located directly underneath 

the cuticle of the host, i.e. in a position with the most direct access to pore water metabolites 

[10]. The OalgS1 genome also encodes a periplasmic [Fe] hydrogenase, most similar to those 

found in other spirochaetes, suggesting that it is maintaining redox balance within the cell by 

releasing molecular hydrogen. The fermentation of carbohydrates to mixed acids and CO2 + H2 is 

a common metabolic strategy among the closely related environmental spirochaetes isolated 

from marine sediments [29, 30, 3]. This hydrogen could in turn also be used as energy source by 

the deltaproteobacterial symbionts. The CO2 released during hydrogen formation might help to 

increase the concentration of inorganic carbon for autotrophic fixation by the sulfur-oxidizing  

 

Figure 3: Schematic overview of main metabolic functions in OalgS1 (next page). OalgS1 is 
capable of synthesizing almost all of its amino acids and vitamins and co-factors (no shown) itself 
and possesses full pathways for the synthesis of nucleotides and nucleosides, fatty acids, and 
peptidoglycan. OalgS1 is able to take up plenty of different sugars from the environment 
(multiple copies of transporters of the same type shown as one) and ferments them to mixed 
acids. OalgS1 can release excess reducing power as hydrogen, or oxidize available environmental 
hydrogen via a periplasmic [Fe]-hydrogenase shared with other spirochetes. OalgS1 can build up 
glycogen as a carbon and energy storage molecule and can use quorum sensing. Dashed lines 
indicate multiple reaction steps that are not shown.  
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symbionts. Since molecular hydrogen occurs naturally in the host environment, and is used by 

the deltaproteobacterial symbionts to gain energy, hydrogen might also be used to generate a 

proton motive force and synthesize ATP via a V-type ATPase (see below) in the spirochaete 

symbiont. In summary, the spirochaetal symbiont might contribute to the energy budget of the 

symbiosis by fermenting environmental carbohydrates and sugar alcohols and forming a 

syntrophic relationship with the deltaproteobacterial symbionts, which consume its 

fermentation end products (cross-feeding).  

In contrast to other symbionts with a reduced genome among the Spirochaetaceae (mainly 

reduced Borrelia spp.), OalgS1 has retained all of its capability to synthesize amino acids from 

precursors derived from glycolysis, the pentose phosphate pathways, and ammonia assimilation 

(Figure 3). Still, the OalgS1 genome encodes several high-affinity uptake transporters for amino 

acids and glycine betaine, similar to the deltaproteobacterial symbionts of O. algarvensis. Both 

symbiont groups might therefore be able to recycle nitrogenous wastes of the host. No 

indication for N2 fixation, which many free-living and symbiotic spirochetes are capable of, was 

found. This is quite surprising, as the pore water in the worm’s habitat is very low in nitrogenous 

compounds [31], and the ability to fix atmospheric nitrogen should be advantageous in this 

context. On the other hand, nitrogen fixation is highly energy demanding and might not be 

sustainable in an energy-limited environment. The low amounts of dissolved nitrogen 

compounds found in the pore water in combination with the ability of the symbionts to 

efficiently recycle nitrogenous waste of the host, might be sufficient sources of nitrogen for the 

symbiosis. The OalgS1 genome encodes a high-affinity phosphate uptake transporter, which 

would allow sequestering inorganic phosphate from the phosphate-poor sediment pore water. 

Like other spirochetes, OalgS1 lacks a respiratory electron transport chain and gains energy via 

substrate level phosphorylation. Membrane potential is achieved by the activity of a V-type 

ATPase, which is unusual for eubacteria (V-type ATPases are typical of eukaryotes). This kind of 
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V-type ATPase was also identified in other spirochetes (Treponema pallidum, Borrelia 

burgdorferi), and it has been hypothesized that this kind of ATPase is a particular spirochaetal 

feature [32].  

Interestingly, the genome of OalgS1 encodes a rubredoxin and rubrerythrin (Supplementary 

Table 5), which are both proteins that contribute to oxidative stress tolerance in anaerobic 

bacteria [33]. Environmental Spirochaeta isolates are mostly anaerobes, but some, like 

Spirochaeta perfilievii are aerotolerant [34, 35]. The spirochaetes that tolerated microoxic 

conditions were isolated from bacterial sulfur mats, an environment that could, in many ways, 

be considered similar to the chemosynthetic consortium in O. algarvensis. Since the symbiont 

community of O. algarvensis encompasses both aerobic sulfur-oxidizers and anaerobic sulfur-

oxidizers and sulfate-reducers, the worm is thought to shuttle between oxic and anoxic layers of 

the sediment to provide its aerobic symbionts and itself with oxygen. Therefore, these proteins 

might protect the OalgS1 symbiont from oxidative stress during oxic phases.  

Molecular interactions between OalgS1 and its host O. algarvensis 

OalgS1 is able to produce the quorum sensing autoinducer AI-2, indicating that it is capable of 

cell-density regulated responses, which often play a role in host colonization in pathogenic as 

well as mutualistic symbioses [36, 37, 38]. It also encodes a number of two-component 

regulatory and other response signaling proteins (Supplementary Table 5), indicating that it is 

able to respond to a variety of different stimuli within the host environment.  Apart from genes 

encoding for classical MAMPs (microbe-associated molecular patterns), like flagellin and  

peptidoglycan, we identified a large number of genes that are implied or were shown to be 

important for host colonization and host-microbe interaction in pathogenic, commensal and 

mutualistic symbiosis in the OalgS1 genome. The identified genes are summarized in 

Supplementary Table 5, and their putative function in OalgS1 is discussed below. Interestingly, 
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like other host-associated spirochaetes, e.g. Treponema and Borrelia, OalgS1 is not able to 

synthesize LPS. 

Leucine-rich repeat proteins 

The OalgS1 genome encodes a leucine-rich repeat (LRR) protein which was highly similar to LRR 

proteins of other spirochaetes (Supplementary Table 5). LRR proteins were shown to play a role 

in mediating binding of Treponema denticola to other bacteria and epithelial cells of the host 

[39]. Likewise, OalgS1 LRR protein might contribute to host and symbiont binding in 

O. algarvensis, which might play a role in host colonization and syntrophic metabolic 

interactions between the spirochaete symbiont and the deltaproteobacterial symbionts, which 

are able to metabolize its fermentation end products.  

Lipoproteins 

Lipoproteins are extremely abundant in pathogenic spirochaetes, ranging from 36 (Borrelia 

garinii) to 217 (Leptospira interrogans serovar Copenhageni) different lipoproteins encoded per 

genome [40]. The function of most of these lipoproteins is unclear, but a few were shown to play 

a role in pathogenesis, while others have roles in cell physiology [41]. Only three lipoproteins 

were identified in OalgS1, all of them most similar to other spirochaetal lipoproteins of unknown 

function. Although a more extensive search might reveal more candidates, it seems clear that 

the number of lipoproteins in OalgS1 is much lower than is common in pathogenic spirochaetes. 

A reduced number of lipoproteins might be related to reduced virulence in spirochaetes; 

however, this hypothesis requires proper analysis of all available spirochaete genomes in order 

to reliably detect trends between pathogenic and non-pathogenic spirochetes.  OalgS1 encodes 

most of the necessary components for the transport of lipoproteins to the periplasmic space and 

subsequent translocation to the outer membrane (Apolipoprotein N-acyltransferase, lipoprotein 

ABC transporter ATP-binding protein, lipoprotein ABC transporter permease, lipoprotein signal 
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peptidase II, prolipoprotein diacylglyceryl transferase, SecA, SecD, SecF, SecY), indicating that 

lipoproteins do fulfill an important (but unknown) role in OalgS1.  

Tetratricopeptide repeat proteins (TPR), Ankyrin repeat protein and lectin 

The OalgS1 genome encodes 14 different TPR proteins, one Ankyrin repeat protein, and a lectin-

domain containing protein. All these proteins mediate protein-protein or carbohydrate-protein 

interaction and are implicated or shown to play important roles in bacteria-host interactions in 

mutualistic symbiotic and pathogenic systems [42, 6, 43]. In OalgS1, these proteins are 

promising candidates for elucidating the mechanisms that aid in host colonization and 

interaction.  

Outer membrane/surface proteins and antigens 

Several genes were present in the OalgS1 genome that encode surface structures shown or 

hypothesized to be involved in recognition by the host’s immune system. These include Borrelia 

P83/P100 antigen protein, outer membrane protein OmpA and an unspecified outer membrane 

surface antigen. P83/P100 is a family of major Borrelia antigen proteins of unknown function 

that is highly specific to Borrelia infections and is therefore used as diagnostic markers to detect 

Lyme disease [44]. The amino acid sequences of these proteins are conserved but also display 

regions of variability that allow discrimination between different species [45]. Since p83/p100 

elicits the humoral production of antibodies in mammals, it must be accessible to the host’s 

immune system, either by being attached to the bacterial surface, or by being released from the 

cell. As an invertebrate, O. algarvensis is not capable of producing antibodies, which is a feature 

of adaptive immunity; however, it does produce a large amount of lectins and other pattern 

recognition molecules (Wippler et al. 2016, submitted) which might allow for specific recognition 

of this symbiont. The actual expression and effect of this protein in the O. algarvensis symbiosis 

remains to be shown experimentally, and warrants further exploration.  
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The second surface antigen encoded by OalgS1 contained the conserved bacterial surface 

antigen domain D15 (IPR000184), which has been shown to be involved in host-pathogen 

interactions before [46, 47]. Based on sequence similarity, it was most closely related to proteins 

from other Spirochaetaceae, including free-living environmental, termite-symbiotic and 

commensal/pathogenic species (data not shown), indicating that this protein is wide-spread 

among this group and that it is not restricted to pathogenic interactions. Like p83/p100, this 

protein could play a role in symbiont recognition in O. algarvensis.   

Outer membrane proteins, like OmpA, are major proteins of the bacterial cell envelope, and 

often play a role in host-microbe interactions because they are microbe-asssociated molecular 

patterns that are recognized by the host immune system [48]. OmpA was shown to be a major 

factor of virulence in many pathogenic bacteria, including spirochaetes [49, 48]. However, it is 

also an important factor in mutualistic host-microbe associations, like the squid – Vibrio light 

organ symbiosis [50], and the tsetse fly – Sodalis nutritional symbiosis [51]. OmpA is also a 

surface receptor for bacteriophages and might serve as entry point for OalgS1 phages [52], in 

addition to being involved in host recognition and interaction.  

Cytoplasmic filament 

OalgS1 encodes cytoplasmic filament protein CfpA, a protein exclusively found in spirochetes [53, 

54]. The concrete function of cytoplasmic filaments is unknown, but is hypothesized to play roles 

in cell motility, maintenance of cell structure, or cell division [53, 54]. In addition, cytoplasmic 

filament was shown to be necessary to successfully form multi-species biofilms and colonize the 

host in T. denticola [55] and might therefore play a role in host colonization in OalgS1 as well.  

The lack of typical major host cell cytotoxic factors of spirochaetes in the OalgS1 symbiont 

Two major factors have been indentified in pathogenic spirochaetes that contribute to host 

disease and host cell death: i) Dentilisin, a cell-surface located protease that is able to interefere 
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with host immune signaling, degrades host cell matrix proteins and is implicated in the 

penetration of host epithelial cells in T. denticola [56, 57],  and ii) the Major Sheath Protein Msp 

which is an abundant outer membrane protein in pathogenic spirochaetes like T. pallidum and T. 

denticola, and was shown to have cytotoxic activity against epithelial cells [58, 59]. Neither Msp, 

nor dentilisin (which is encoded by the three genes prcB, prcA, and prtP), could be identified in 

the genome of OalgS1 using blastp searches and the canonical protein sequences as queries. 

This marked difference might reflect that OalgS1 is not pathogenic in O. algarvensis, and has not 

retained proteins that would be directly harmful to host cells.  

Mobile genetic elements 

OalgS1 encoded a single IS1-type transposase in its genome. Transposases are exceptionally 

abundant in the genomes of the other O. algarvensis symbionts, and many of them are also 

extremely abundantly expressed [12, 60]. These symbionts possess the highest number of 

transposases ever reported in any bacteria. In this context, it is surprising to find only a single 

copy of an IS element transposase in OalgS1. The high numbers of transposases in the genomes 

of the other O. algarvensis symbionts are thought to be a reflection of recent host restriction 

[61]. According to this model, free-living bacteria or symbionts with a free-living stage that 

recently have become obligately host restricted experience rampant transposase multiplication 

due to factors such as reduced purifying selection and increased genetic drift within the host 

environment. The model also predicts that these transposases are eventually lost from ancient 

endosymbionts as a result of genome reduction and lack of intergenomic exchange with other 

bacteria. The lack of such transposase proliferation in OalgS1 could either mean that this 

symbiont has been strictly associated with O. algarvensis for a very long time, or that this 

symbiont also has a free-living stage. 

The OalgS1 genome encoded a prophage (Figure 4), a CRISPR Cas protein (Supplemental Table 4), 

a CRISPR array (Supplementary Table 6) with 18 CRISPR repeats (two different repeats) and 17 
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(phage-derived) CRISPR spacers, and other isolated genes encoding phage proteins 

(Supplementary Table 5). This confirms that infections by bacteriophages have happened 

multiple times in the evolutionary history of this symbiont. One of the spacer sequences 

perfectly matches segments of the prophage shown in Figure 4, indicating that this phage has 

activated the symbiont’s CRISPR-Cas defense system at least once. The metagenomic read 

coverage of the phage-encoding region is much higher compared to the rest of the surrounding 

genomic region in one out of the six sequenced worms (Figure 4). The likely explanation for this 

observation is that there were many more physical DNA copies of this phage present in that 

worm specimen, indicating that this phage was active and had entered its lytic phase. This also 

means that the phage’s genome is made of dsDNA, since the method for preparing our 

sequencing libraries excludes ssDNA and RNA molecules. Interestingly, no reads mapped to a 

part of the gene coding for the phage tail protein in the other five specimens, indicating that this 

gene is missing or truncated. It would explain why the phage is not active in those specimens. 

The presence of mobile genetic elements like phages and transposases in the OalgS1 genome 

indicates that OalgS1 is open to infection with new genetic elements from the environment and 

supports the hypothesis that OalgS1 is not obligately restricted to the host. Both types of mobile 

elements are known to serve as mechanisms for the acquisition and integration of foreign DNA 

(horizontal gene transfer) into bacterial genomes and might allow new genes to be brought into 

the symbiosis [62, 63].  
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Figure 4: High read coverage of the prophage encoded in the OalgS1 genome in one worm 
specimen indicates active replication. Top panels show read coverage of the genomic region 
containing the phage in each metagenome (metagenomes from worm specimens 1 – 6). Note 
that the coverage of the phage sequences is in the same range as the rest of the genomic region, 
with the exception of worm 5, where the read coverage of the phage is considerably higher, 
indicating that the phage was replicating in this specimen. Part of the phage tail protein appears 
to be missing in all other metagenomes, as its coverage is zero in all metagenomes except the 
one in which it was lilkey replicating. Truncation of the phage tail gene might explain why the 
phage was not active in these specimens. Genes econding phage proteins are colored as 
indicated, spirochaete genes are shown in gray.   
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Conclusion 

In this study, we describe the first sequenced genome of a symbiotic spirochaete of the 

otherwise free-living Spirochaeta group. The metabolic functions of this symbiont are highly 

similar to those of other free-living Spirochaeta, and include the fermentation of various 

carbohydrates, but not amino acids and alcohols, to mixed short chain fatty acids and CO2 + H2. 

Due to the lack of cytotoxic proteins typical for tissue invading pathogenic spirochaetes, we 

propose that the spirochaete symbiont of O. algarvensis is a mutualistic symbiont that engages 

in a syntrophic cross-feeding relationship with the hydrogen and acetate/succinate oxidizing 

sulfate-reducing symbionts. The presence of uptake transporters for a variety of sugars, some of 

which are found in the surrounding pore water, and the symbiont’s localization directly 

underneath the host’s permeable cuticle, suggest that the spirochaete uses environmentally 

derived degradation products of abundant decaying seagrass rhizomes. Future transcriptomic, 

proteomic and physiological incubation experiments should further elucidate the role and 

contribution of this spirochaete to the symbiosis.  
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Supplementary Table 1: Sequencing statistics 

Worm Site Raw reads ( million pairs) Processed reads ( million pairs) Sequencing center Accession 

A1 Sant' Andrea 111 55 JGI DOE 1021950a) 

A2 Sant' Andrea 77 38 JGI DOE 1021953a) 

A3 Sant' Andrea 170 84 JGI DOE 1021956a) 

B1 Sant' Andrea 84 42 JGI DOE 1021959a) 

B2 Sant' Andrea 107 53 JGI DOE 1021962a) 

B3 Sant' Andrea 90 44 JGI DOE 1021965a) 

 

 

Supplementary Table 2: Assembly statistics for OalgS1 genomes assembled from individual 
O. algarvensis worm specimens (A1-3, G1-3) and co-assembly from six O. algarvensis specimens 
(OalgS1). 

Assembly A1 A2 A3 G1 G2 G3 OalgS1 

# contigs (all) 18 32 21 29 18 35 301 

# contigs (>=1 kb) 17 29 19 28 17 28 301 

Total length (all) 963155 180912 914391 549950 1138222 117016 2182993 

Total length (>=1 kb) 962660 179172 913665 549454 1137727 111884 2182993 

Largest contig 230242 19411 177514 46209 229499 15007 228402 

GC (%) 46.23 46.26 46.35 46.39 46.44 46.9 45.97 

N50 80079 10270 134743 29651 117451 5719 90077 

N75 60010 4433 50034 19384 75935 2631 26436 

L50 4 6 3 8 4 7 9 

L75 7 13 7 14 7 15 18 

# Ns per 100 kbp 0 0 0 0 0 0 0 
 

Supplementary Table 3: ANI (average nucleotide identity) between OalgS1 draft assemblies 
from individual worm specimens. 

specimen A1 A2 A3 G1 G2 G3 

A1 X 99.75 99.74 99.75 99.83 99.82 

A2 X X 99.81 99.77 99.75 99.77 

A3 X X X 99.84 99.75 99.83 

G1 X X X X 99.77 99.85 

G2 X X X X X 99.80 

G3 X X X X X X 



Chapter 3 

 
 

- 136 - 
 

Supplementary Table 4: OalgS1 flagellum synthesis proteins, not in RAST subsystems.  
 
Feature ID Start Stop Length (bp) Function 

fig|260710.3.peg.375 90072 89725 348 Flagellar protein FlgJ [peptidoglycan hydrolase] (EC 3.2.1.-) 

fig|260710.3.peg.376 90878 90084 795 Flagellar basal-body rod protein FlgG 

fig|260710.3.peg.377 91763 90957 807 Flagellar basal-body rod protein FlgF 

fig|260710.3.peg.573 103807 103382 426 Flagellar biosynthesis protein FliS 

fig|260710.3.peg.632 3763 2795 969 flagellar filament outer layer protein 

fig|260710.3.peg.713 12475 11603 873 Flagellar synthesis regulator FleN 

fig|260710.3.peg.714 13710 12478 1233 Flagellar biosynthesis protein FlhF 

fig|260710.3.peg.715 15737 13710 2028 Flagellar biosynthesis protein FlhA 

fig|260710.3.peg.716 16947 15790 1158 Flagellar biosynthesis protein FlhB 

fig|260710.3.peg.717 17753 16956 798 Flagellar biosynthesis protein FliR 

fig|260710.3.peg.718 18004 17750 255 Flagellar biosynthesis protein FliQ 

fig|260710.3.peg.719 18826 18029 798 Flagellar biosynthesis protein FliP 

fig|260710.3.peg.721 20621 19503 1119 Flagellar motor switch protein FliN 

fig|260710.3.peg.722 21646 20621 1026 Flagellar motor switch protein FliM 

fig|260710.3.peg.723 22231 21665 567 Flagellar biosynthesis protein FliL 

fig|260710.3.peg.725 23080 22334 747 Flagellar motor rotation protein MotB 

fig|260710.3.peg.726 23863 23084 780 Flagellar motor rotation protein MotA 

fig|260710.3.peg.728 25536 24124 1413 Flagellar hook protein FlgE 

fig|260710.3.peg.729 25986 25552 435 Flagellar basal-body rod modification protein FlgD 

fig|260710.3.peg.731 27841 27203 639 Flagellar protein FlbB 

fig|260710.3.peg.734 30514 29612 903 Flagellar assembly protein FliH 

fig|260710.3.peg.735 31603 30524 1080 Flagellar motor switch protein FliG 

fig|260710.3.peg.736 33317 31605 1713 Flagellar M-ring protein FliF 

fig|260710.3.peg.738 34166 33708 459 Flagellar basal-body rod protein FlgC 

fig|260710.3.peg.739 34583 34173 411 Flagellar basal-body rod protein FlgB 

fig|260710.3.peg.907 16411 14873 1539 Flagellar synthesis regulator FleN 

fig|260710.3.peg.1007 17731 19722 1992 Flagellar hook-associated protein FliD 

fig|260710.3.peg.1013 23480 23025 456 Flagellar assembly factor FliW 

fig|260710.3.peg.1014 24666 23488 1179 Flagellar hook-associated protein FlgL 

fig|260710.3.peg.1015 26611 24734 1878 Flagellar hook-associated protein FlgK 

fig|260710.3.peg.1873 117407 116715 693 flagellar filament outer layer protein FlaA, putative 

fig|260710.3.peg.1874 118189 117410 780 flagellar filament outer layer protein FlaA, putative 

fig|260710.3.peg.1900 147393 146194 1200 Flagellar motor switch protein FliG 
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Abstract 

Background: The gutless marine worm Olavius algarvensis has a completely reduced digestive 

and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. 

While considerable knowledge has been gained of the symbionts, the host has remained largely 

unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better 

understand how this annelid worm gains nutrition from its symbionts, how it adapted 

physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and 

responds to its symbiotic microbiota.  

Results: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive 

enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's 

epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of 

the worm’s symbionts; and (iii) the expression of a very abundant protein for oxygen storage, 

hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. 

Additionally, we identified a large repertoire of proteins involved in interactions between the 

worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition 

proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial 

proteins.  

Conclusions: We show how this worm, over the course of evolutionary time, has modified 

widely-used proteins and changed their expression patterns in adaptation to its symbiotic 

lifestyle and describe expressed components of the innate immune system in a marine 

oligochaete. Our results provide further support for the recent realization that animals have 

evolved within the context of their associations with microbes and that their adaptive responses 

to symbiotic microbiota have led to biological innovations.  
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1 Background 

Most, if not all, animals are associated with a species-specific microbial assemblage that 

profoundly affects their evolution, ecology, development and health [1, 2, 3]. Animals and their 

microbiota have evolved molecular mechanisms to recognize and maintain these stable 

associations, and on the host side, these mechanisms are largely mediated by their immune 

system [4]. The mechanisms that govern host-symbiont interactions have been studied in a 

number of model organisms [4, 5], but remain unexplored in many animal phyla.  

Olavius algarvensis is a gutless oligochaete worm (Annelida; Oligochaeta; Phallodrilinae) that 

lives in an obligate nutritional symbiosis with at least four bacterial species [6]. These 

extracellular endosymbionts thrive in a dense bacterial layer between the cuticle and the 

epidermis of the worm (Figure 1). Over the course of their symbiotic evolution, the gutless 

oligochaetes have lost their digestive and excretory organs, and rely solely on their bacterial 

symbionts for nourishment and removal of their waste products [7, 8, 9]. O. algarvensis harbors 

two gammaproteobacterial symbiont species that are chemoautotrophic sulfur oxidizers, and 

two deltaproteobacterial symbionts that are sulfate-reducing bacteria [6]. Together, these 

symbionts engage in a syntrophic sulfur cycle that enables autotrophic carbon fixation by the 

sulfur-oxidizing symbionts and provision of organic carbon to the host [8, 9]. Many worm 

individuals also harbor a spirochaetal symbiont, whose function has not yet been resolved [10].  

Metagenomic and metaproteomic studies of the symbionts have revealed much about their 

metabolic capabilities, highlighted their immense capacity to use and recycle the host’s waste 

products and led to the discovery of novel, energy-efficient pathways to fix both inorganic and 

organic carbon into biomass [8, 9]. Research aimed at a better understanding of the host, on the 

other hand, has been hampered by the fact that the worms are very small (0.1 - 0.2 mm in 

diameter and 10 - 20 mm in length), cannot be cultivated, and by a lack of sequence data. 

Recent advances in sequencing technology have made it possible to sequence and assemble 
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comprehensive de novo transcriptomes of uncultured, non-model organisms collected in the 

environment. These transcriptomes provide a refence database for identifying the proteins 

organisms express using mass-spectrometry-based proteomic approaches. This methodological 

advance has opened the door for in depth studies of the molecular repertoire used by O. 

algarvensis and other non-cultivable organisms to establish and maintain a successful symbiosis.   

All animals employ mechanisms for selecting and maintaining a specific microbial consortium 

over the course of their lives, while avoiding overgrowth by their own microbiota or infection by 

detrimental bacteria from the environment. The innate immune system is crucial in the 

establishment and maintenance of healthy symbiotic interactions, but has so far not been 

studied in gutless oligochaetes. These hosts face additional challenges because they obligately 

rely on their symbionts and therefore must provide conditions under which they can thrive, 

while also dealing with the physiological challenges caused by their symbiotic lifestyle. For 

example, O. algarvensis must be able to live in anoxic sediment layers for extended periods of 

time to enable sulfate reduction by its anaerobic sulfate-reducing symbionts [8]. Additionally, it 

must be able to deal with the hydrogen sulfide that is produced during sulfate reduction. It must 

also be able to endure the relatively high carbon monoxide concentrations in its environment, 

which both the sulfate-reducing and sulfur-oxidizing symbionts use as an energy source [9, 11]. 

Another challenge occurs when O. algarvensis inhabits the upper oxygenated sediment layers 

where it competes for oxygen with its aerobic sulfur-oxidizing symbionts. 

Here, we used transcriptomics and proteomics to elucidate how O. algarvensis fulfills the 

physiological requirements outlined above and how it obtains nutrition from its symbionts. We 

exposed worms collected from the environment to two types of conditions that they naturally 

encounter to increase transcriptome and proteome coverage. Our identification and analysis of 

proteins expressed by O. algarvensis provide insights into their molecular mechanisms for 

microbe recognition, interaction and regulation, as well as their physiological adaptations to 

living in symbiosis with sulfur-oxidizing and sulfate-reducing bacteria.  
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2 Methods 
 

Sample collection and incubations 

For proteomic analyses, sediment that contained gutless oligochaete worms was collected at 

7 meters water depth in the Bay of Sant’Andrea, Elba, Italy (42°48’26’’N, 010°08’28’’E) in 

October 2007 and 2008. Worms were carefully washed out of the sediment at the HYDRA field 

station (Fetovaia, Elba, Italy) by hand (for details see [9]). To increase proteome coverage we 

treated the worms in the following manner. Worms were either immediately frozen in liquid 

nitrogen in batches of 150-200 worms (called "fresh" worms in the following) or were kept for 8 

days in glass petri dishes filled with a thin layer (2-3 mm) of washed sediment and 0.2 μm-

filtered sea water and then frozen in liquid nitrogen (called "starved" worms in the following, 

because no external electron donor for energy conservation and autotrophic carbon fixation was 

provided). The sulfur-oxidizing symbionts of O. algarvensis store large amounts of sulfur and 

polyhydroxyalkanoate granules, which give the worms a bright white appearance. Under 

prolonged exposure to oxygen without access to an electron donor like the sulfide produced 

anaerobically by the sulfate-reducing symbionts, these storage granules become depleted, the 

worms turn transparent, and are effectively starved of nutrition. Transparent worms are 

regularly found in the environment, especially during the reproductive season of the worms. All 

samples were stored in liquid N2 and later at -80°C until further use.  

For transcriptomics, 100-120 worms were collected in April 2012 from the same site as for 

proteomics. The live worms were kept in washed sediment and transported to the lab in Bremen 

where they were washed out of the sediment again, washed in petri dishes with filtrated 

seawater, then flash-frozen in liquid nitrogen and stored at -80°C until they were used to 

prepare the cDNA library “A”. A second collection of worms was used for library "B" to identify 

genes expressed under prolonged anoxia, a condition that the worms often experience. For 

library "B", 100-120 live worms were collected in March 2013 from the same site as above, 
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transported to Bremen in the same way as for library "A", and incubated in anoxic serum bottles 

for 43 hours. Serum bottles were filled with sediment and sea water from Elba, and were flushed 

with nitrogen to remove oxygen from the headspace. The sediment and sea water were not 

sterilized, so that fully anoxic conditions could develop quickly through microbial metabolism. 

Oxygen concentrations were measured at the end of the incubation with an oxygen 

microelectrode and were below 0.1 μM. Worms were fixed overnight in RNAlater (Thermo 

Fisher Scientific, Braunschweig, Germany) at 4°C and stored at -80°C until they were used to 

prepare the cDNA library “B”. 

Illumina library preparation and sequencing 

Total RNA was isolated using peqGOLD TriFast reagent (PEQLAB, Erlangen, Germany) and 

treated with DNase. Poly(A)+ RNA was isolated from the total RNA, fragmented with ultrasound 

(2 pulses of 30 sec at 4°C) and used for cDNA synthesis with random hexamer primers. Illumina 

TruSeq adaptors were ligated to the ends of the cDNA fragments and amplified according to the 

manufacturer’s instructions (Illumina Inc., USA). Library DNA fragments of 300-500 bp were 

eluted from a preparative agarose gel and paired-end sequenced on an Illumina HiSeq2000 

sequencer (2x 100 bp). We sequenced ~170 million read pairs from library A, and ~6 million read 

pairs from library B (Supplementary Table 1). For library B, a much smaller number of reads was 

sequenced because the purpose of this library was to detect abundant transcripts expressed 

under anoxic conditions.  

De novo transcriptome assembly and sequence analysis 

The raw reads were trimmed to remove Illumina adapters, filtered for PhiX174 spike-in DNA and 

quality trimmed with nesoni clip version 0.109 [12]. The cleaned reads were co-assembled de 

novo using Trinity release 2013-02-25 [13]. Transcripts were quantified with RSEM as 

implemented in Trinity [14].  
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De novo assembled transcripts were annotated with blast2GO [15]. Transcripts of particular 

interest were searched against the invertebrate division of EST (Expressed Sequence Tags) and 

TSA (Transcriptome Shotgun Assembly) sequences of NCBI with tblastx [16] to determine their 

similarity to genes expressed in other annelids.  

Hemoglobin sequences were assigned to families, if possible, based on sequence homology and 

specific conserved amino acid patterns as described in [17]. The secondary structures of the 

putative sulfide binding domains in O. algarvensis hemoglobin chains were predicted with 

hydrophobic cluster analysis using the program drawhca [18]. 

Host species identification 

Three species of gutless oligochaete co-occur at the sampling site and these species are difficult 

to distinguish reliably under the dissecting scope. Therefore, we used EMIRGE [19] to estimate 

the relative abundance of the different species in our samples based on the read coverage of the 

mitochondrial cytochrome c oxidase I (COI) gene. We determined that the contamination with 

species other than Olavius algarvensis was less than 3.5% in library A and less than 0.1 % in 

library B.  

2D-LC-MS/MS 

Protein was extracted from frozen worms, and peptides prepared as previously described using 

a single-tube small processing method [20, 9]. We analyzed three biological replicates for each 

condition (fresh and starved). All samples were analyzed in technical duplicates via 24 hour 

nano-2D-LC MS/MS with a split-phase column (RP-SCX-RP) [21, 22] on a hybrid linear ion trap-

Orbitrap (Thermo Fischer Scientific), as previously described [9]. 

Peptide and protein identifications 

Coding sequences (CDS) were predicted from the transcriptomes using FrameDP [23] and getorf 

of the EMBOSS package using the standard genetic code [24]. Transcriptome CDS were 
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combined into a single protein sequence database with the symbiont protein sequence database 

used by Kleiner et al. 2012 [9]. Redundant CDS were removed from the database using CD-HIT 

(version 4.5.4, [25].  Experimental peptide fragmentation spectra (MS/MS) generated from 

Xcalibur v.2.0.7 were compared with theoretical peptide fragmentation spectra obtained from 

the protein sequence database to which protein sequences of common contaminant proteins 

(e.g., human keratin and trypsin) were added to a total of 1,318,114 entries. To determine the 

false-discovery rate (FDR), a decoy database, generated by reversing the sequences of the target 

database, was appended. 

MyriMatch v2.1.111 [26] was configured to derive fully-tryptic peptides with the following 

parameters: 2 missed cleavages, parent mass tolerance of 10 ppm, and a fragment mass 

tolerance of 0.5 m/z units. For protein inference, peptide identifications were merged together 

in IDPicker v.3 [27]. Only protein identifications with at least two identified spectra and a 

maximum q-value of 0.02 were considered for further analysis. The number of distinct peptides 

required for identifications was set to 1 to allow for the identification of small antimicrobial 

proteins and/or small, fragmented protein sequences in the transcriptome assembly. Based on 

these settings, protein-level FDR was < 3% for all samples. 

To deal with sequence redundancy, post-search protein grouping was performed by clustering 

all protein sequences in the protein sequence database by sequence similarity (≥ 90%) using the 

UCLUST component of the USEARCH v5.0 software platform [28]. As described previously [29], 

identified proteins were then consolidated into their defined protein groups. Protein groups 

were represented by the longest protein sequence (i.e., the seed sequence), which shares ≥ 90% 

sequence similarity to each member of the protein group. Peptide uniqueness was re-assessed 

and classified as either unique (i.e., only belonging to one protein group) or non-unique (i.e., 

shared among multiple protein groups). For shared peptides belonging to multiple protein 

groups, their spectral counts were recalculated based on the proportion of uniquely identified 
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peptides between the protein groups sharing the peptide. Following spectra balancing, total 

spectral counts of a protein group were converted to normalized spectra counts (nSpC) [30], 

which are derived from normalized spectral abundance factors [31]. Relative protein 

abundances of host proteins are listed in tables as nSpC values multiplied by 10,000 i.e. the sum 

of all host protein nSpC values in one sample is 10,000 and the nSpC values are thus given as a 

fraction of 10,000 (0/000). 

 

3 Results and Discussion 

3.1 Transcriptome/proteome measurement metrics 

To generate our protein sequence database for host protein identification, we sequenced the 

transcriptomes of untreated whole worms (library A), and of worms kept under anoxic 

conditions for 43 hours (library B). We chose these two conditions to obtain a larger range of 

host transcripts and thus improve protein identification. After trimming and error correction, 

159,551,509 (library A) and 5,745,537 (library B) read pairs remained, which were co-assembled 

into 173,602 contigs (Supplementary Table 1 and 2). Of these contigs, 31913 could be 

functionally annotated (see Supplementary Figure 1 for annotation summary). 

We analyzed proteomes of freshly collected worms, and worms that had been starved for 8 days, 

that is kept under oxic conditions without an external electron donor for energy conservation 

and autotrophic carbon fixation (see Methods). The purpose of creating these two conditions 

was to identify as many proteins as possible, including those expressed in worms that are 

starved. We identified a total of 4355 proteins, of which 2562 were host proteins and 1793 were 

symbiont proteins. The annotated host transcriptomes and proteomes were manually screened 

for sequences relevant for host-symbiont interactions. We identified 316 transcriptome 

sequences and 60 proteins potentially involved in microbe recognition, microbial growth 
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regulation, symbiont digestion, immune modulation and physiological interactions (see Table 1 

and Figure 1).   

 

3.2 Physiological adaptations of the host to the symbiosis 
 

3.2.1 Nutrients are transferred from the symbionts to the host via digestion 

Previous to this study, it was not clear how gutless oligochaetes gain nutrition from their 

bacterial symbionts. Two transfer modes, which are not mutually exclusive, have been suggested 

for symbioses with endosymbionts [32]: (1) “milking” of the symbionts (uptake of small 

compounds leaked or actively released by the symbionts), and (2) symbiont digestion through 

endocytosis. Endocytosis can include phagocytosis of symbiont particles or whole cells, as well as 

uptake of extracellularly digested and dissolved compounds by pinocytosis.  

Several results from this study indicate that the main mode of nutrient transfer from the 

symbionts to O. algarvensis is through their digestion. First, we measured significantly less 

symbiont protein relative to host protein in the proteomes of starved worms compared to 

freshly collected worms (t-test, p < 0.01). In starved worms, symbiont protein accounted for only 

18.7% of the total holobiont protein, while freshly collected worms had 29.5% symbiont protein 

(Table 2 and Supplementary Table 3). We cannot exclude that proteins in the symbionts were 

also degraded as a result of prolonged starvation. However, this would not explain the 

discrepancy between host and symbiont protein ratios in fresh compared to starved worms. 

Therefore, symbiont digestion by the host is the most likely explanation for the reduced amount 

of symbiont protein in starved worms.  

Second, we identified 15 digestive enzymes predicted to occur in lysosomes, indicating their role 

in endocytosis, and 28 digestive enzymes involved in general secretory pathways, which could be 

targeted to phagolysosomes or to the extracellular region (Table 3). If secreted extracellularly, 



Chapter 4 

 
 

155 
 

these enzymes would aid in the digestion of symbionts in the extracellular space just below the 

worm's cuticle, and precede endocytotic digestion by the epidermal cells. The digestive proteins 

included various proteases for the degradation of polypeptides and oligopeptides, glucosidases 

with specificity for α1→4, α1→6 and β1→4 glycosidic bonds, and enzymes involved in lipid and 

peptidoglycan degradation (Table 3).  

The third line of evidence that indicates that O. algarvensis digests its symbionts is that it 

expressed three different types of intestinal digestive enzymes, despite the fact that it does not 

have a mouth or gut. (i) The first type were digestive proteases (Table 3), namely pancreatic 

carboxypeptidase A, chymotrypsins A and B, cathepsins B, F and L, and pancreatic elastase. 

These enzymes are most often found in the intestinal tract of animals with a digestive system 

(Supplementary Table 4). Most of the O. algarvensis digestive proteases were highly similar to 

enzymes expressed in the midgut of the oligochaete Eisenia andrei (Supplementary Table 5). (ii) 

O. algarvensis also expressed a number of digestive glucosidases: two alpha amylases, with best 

BLAST hits to salivary gland and pancreatic amylases, an intestinal sucrase-isomaltase and two 

enzymes similar to pancreatic acid trehalase (Supplementary Table 6). (iii) O. algarvensis 

expressed five peptidoglycan recognition proteins (PGRPs) with predicted amidase activity 

(Figure 2) and a lysozyme, all proteins that degrade peptidoglycans. Although PGRPs and 

lysozyme are known for their role in immune defense [33], they can also aid in the digestion of 

food bacteria [34, 35]. The five O. algarvensis PGRP sequences were highly similar to PGRPs 

expressed by the annelid Eisenia andrei in its midgut (Supplementary Table 5).  

Taken together, these results strongly indicate that O. algarvensis obtains nutrition from its 

symbionts by digesting them using a wide range of digestive enzymes, many of which are known 

to be expressed in the digestive tissues of animals. Given that the symbiotic bacteria are only 

found in the body wall of their host, it is highly likely that, in adaptation to the symbiosis, the 

expression of these “intestinal” enzymes has been redirected from the gut to the epidermis. This 
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assumption is supported by ultrastructural analyses that show the lysis of symbionts in the 

epidermal cells of the worm [36]. Additional support for the digestion of symbionts instead of 

“milking” stems from the observation that some of the O. algarvensis symbionts abundantly 

expressed high-affinity uptake transporters for organic substrates [9]. If 'milking' were the main 

manner in which the hosts gained their nutrition, they would compete with their symbionts for 

the uptake of small organic compounds.   

3.2.2 Giant hemoglobins are likely involved in sulfide tolerance and transport 

O. algarvensis abundantly expressed giant extracellular hemoglobins, which are respiratory 

pigments produced exclusively by annelids [37]. They are large multiprotein complexes (3.8 MDa 

in earthworms [38]), each consisting of more than a hundred copies of heme-containing globin 

chains and non-heme linker chains [37]. We found 12 globin chains and 6 linker chains from 

giant extracellular hemoglobins in our proteomes and transcriptomes (Supplementary Table 7). 

A signal peptide was predicted for all complete coding sequences, lending further support that 

these hemoglobins are indeed extracellular. Of the twelve O. algarvensis hemoglobin chain 

sequences, five could be unequivocally assigned to their respective families (3x family A, 2x 

family B).  

We found that one of the three chains assigned to family A contained a free cysteine residue 

(Figure 3). Free cysteine residues do not participate in the formation of disulfide bonds in 

proteins, and therefore may unintentionally react with other blood components and disturb 

blood homeostasis [39, 40]. Extracellular hemoglobins are therefore under strong selective 

pressure to avoid the incorporation of free cysteines. The exception are annelids that experience 

high concentrations of sulfide in their habitats (Figure 3, [17]). In these worms, free cysteine 

residues in the A2 and B2 hemoglobin chains may allow them to reversibly bind environmental 

hydrogen sulfide and oxygen simultaneously [41]. It has been argued that this could mitigate the 

toxic effects of hydrogen sulfide for these worms. In hydrothermal vent tube worms, which also 
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have free cysteine residues in their hemoglobin, it has been assumed that these also allow them 

to bind and transport sulfide to their sulfur-oxidizing endosymbionts [42]. In these worms 

sulfide-binding to hemoglobin could also be mediated by zinc ions rather than free cysteine [43, 

44]; however zinc does not appear to play a role in sulfide-binding in other annelids [45].  

In O. algarvensis, the free cysteine residue is located in the conserved position that allows 

sulfide binding, and hydrophobic cluster analysis showed that the molecular environment of this 

free cysteine is highly similar to the sulfide-binding domain of A2 chains in other annelids 

(Supplementary Figure 2). It is therefore plausible that the O. algarvensis hemoglobin can also 

bind sulfide.  

O. algarvensis lives in oligotrophic sediments with very low environmental sulfide 

concentrations [6, 9]. However, its sulfate-reducing symbionts are a considerable internal source 

of sulfide under anoxic conditions [6]. With its sulfide-binding hemoglobin, the host could store 

this internally produced sulfide for use by the SOX symbionts once they return to oxic conditions. 

Furthermore, the sulfide-binding hemoglobin might keep sulfide levels low in sensitive tissues of 

O. algarvensis such as the central nervous system.  

 

3.2.3 Hemerythrin may enable respiration in the absence of O2 and in the presence of 

CO 

In addition to hemoglobin, the host expressed two hemerythrins, which are also respiratory 

proteins, but without heme groups. One of these hemerythrins was by far the most abundant 

protein in both fresh and starved worms, and accounted for 11 - 15% of total host protein 

(Supplementary Table 8). In contrast, the second most abundant protein, a histone, accounted 

only for less than 3%. Both hemerythrins were more highly expressed than any of the 

hemoglobin chains; expression levels of the most abundant hemerythrin were almost 32 times 

higher than the most abundant globin chain in the proteome (Supplementary Table 8). Such 
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abundant expression of hemerythrin is unknown from gut-bearing oligochaetes and other 

annelids (Supplementary Table 9). 

Hemerythrin is an oxygen-carrying protein in sipunculids, priapulids and brachiopods, and also in 

a few polychaete annelids [46, 47]. In addition to oxygen transport, annelids might use 

hemerythrins for heavy metal resistance and antibacterial defense, or as an egg yolk protein [48, 

49, 50]. In the only study that found hemerythrin expression in an oligochaete, it was assumed 

to be involved in heavy metal detoxification [49]. Since the environment of the O. algarvensis 

sampled for this study is considered pristine and oligotrophic, and not contaminated with high 

levels of heavy metals or pathogenic bacteria, and the worms in our experiments were not 

exposed to such conditions, it is unlikely that the high expression levels of hemerythrin are 

related to heavy metal resistance or antibacterial defense. We can also exclude its role in egg 

yolk protein, because the worms for proteomics were sampled in the fall, a time of the year 

when O. algarvensis does not reproduce (Kleiner, Lott, Wippler, unpublished observation). 

Therefore, it seems most likely that the hemerythrin in O. algarvensis is used to bind oxygen. 

This raises the question why O. algarvensis has two abundant oxygen binding proteins - 

hemoglobin and hemerythrin.  

The fact that hemerythrin expression is unusual in oligochaetes suggests that there is a 

considerable selective advantage for its expression in O. algarvensis. One intriguing property of 

hemerythrin is that it is insensitive to carbon monoxide (CO) [51]. In contrast, heme proteins 

such as hemoglobin and myoglobin have much higher affinities for CO than for oxygen [52, 53]. 

This makes CO highly toxic to organisms that rely on heme proteins for oxygen transport. 

Considerable in situ CO concentrations of up to 51 nM were regularly measured in the O. 

algarvensis environment [11], and CO serves as an energy source for its sufur-oxidizing and 

sulfate-reducing symbionts [9]. Thus, the selective advantage of using hemerythrin for oxygen 

binding could be that it mitigates the adverse effects of carbon monoxide for the host.  
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The question remains why hemoglobin is also expressed in O. algarvensis, in parallel to 

hemerythrin. We speculate that hemerythrin and hemoglobin fulfill different functions in these 

worms. We propose that hemerythrin is used for oxygen storage to bridge the frequent and 

extended periods of anoxia that O. algarvensis is exposed to in the reduced sediment layers it 

mainly inhabits. Hemerythrin is well suited for oxygen storage because its oxygen binding 

capacity is stable under varying concentrations of O2, CO2 and protons [54, 55], and has been 

shown to play a key role in oxygen storage for bridging hypoxic episodes in sipunculids [56]. In 

contrast, hemoglobin, due to cooperative binding of oxygen and the Bohr effect, is well suited 

for gas exchange with the environment, which occurs in the upper oxic layer of the sediment 

where CO concentrations are much lower [11].  

Interestingly, hemerythrin was also co-expressed with hemoglobin in the sulfur-oxidizing 

symbiont-bearing trophosome tissue of the deep-sea hydrothermal vent tube worm Ridgeia 

piscesae, a polychaete annelid that is not closely related to O. algarvensis [57]. The function of 

hemerythrin in Riftia is at present unknown. It is intriguing that the two animals currently known 

to abundantly express both hemoglobin and hemerythrin, O. algarvensis and R. piscesae, live in 

symbiosis with sulfur-oxidizing bacteria. 

 

3.3 Interactions between the host innate immune system and its 

microbiome  

We analyzed the proteins of the host innate immune system in our transcriptomes and 

proteomes, because these receptors, regulators and effectors are essential for sensing and 

responding to microbes [58], and are thus crucial for establishing and maintaining bacterial 

symbiosis [4]. The immune system must be able to distinguish beneficial symbionts from harmful 

intruders, and must respond appropriately, avoiding chronic inflammation in the presence of 

symbionts, while allowing rapid elimination of non-symbiotic bacteria. 
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3.3.1 Multitude of pattern recognition molecules for differential responses to 

microbes 

Pattern recognition receptors (PRRs) are proteins that recognize microbe-associated molecular 

patterns (MAMPs) by binding to surface molecules specific to microbes like peptidoglycan or 

lipopolysaccharide [59]. PRRs are essential for sensing the presence of different microbial 

species and initiating an appropriate response, either via activation of immune signaling 

pathways and the synthesis of antimicrobial compounds, or by dampening or silencing the 

immune response in the case of bacterial symbionts [4]. We identified many different types of 

classical pattern recognition receptors, as well as proteins potentially involved in pattern 

recognition via conserved domains (Table 1).  

PGRPs. Six peptidoglycan recognition proteins (OalgPGRP1-OalgPGRP6) were expressed in the O. 

algarvensis transcriptomes, and one of these was detected in the proteomes (OalgPGRP2, Table 

1). PGRPs were first described as an important component of the innate immune defense [60], 

but are now known to play a major role in many animal-bacteria symbioses, mediating symbiont 

tolerance [61, 62], controlling symbiont populations [63], and regulating symbiosis 

establishment and maintenance [62, 64]. Elevated expression of PGRPs was also observed in the 

symbiont-bearing tissues of hydrothermal vent tube worms and mussels; however their precise 

function within these symbioses remains unknown [4, 65].  

 Specific PGRP function can not be determined from sequence information alone and depends 

on the molecular context of the environment in which they are expressed. However, some 

assumptions can be made and are discussed in the following. OalgPGRP1, OalgPGRP3 and 

OalgPGRP5 contained N-terminal transmembrane domains (indicating that they are membrane 

integral), as well as novel cytoplasmic domains (Figure 2). As is typical for PGRPs, the poorly 

conserved cytoplasmic domains had no similarity to known sequences [33]. PGRPs that integrate 

into the cell membrane and carry intracellular domains often induce an antimicrobial response 

by activating immune signaling pathways like Toll and IMD (immune deficiency) [66, 67]. 
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However, some PGRP receptors bind peptidoglycans, but do not pass on an intracellular signal, 

thus effectively down-regulating the immune response and mediating tolerance towards 

resident bacteria [68].  

 OalgPGRP2 and OalgPGRP4 consisted only of the conserved PGRP domain itself with a signal 

peptide, indicating that they are secreted (Figure 2). Similar to the transmembrane PGRPs, 

secreted PGRPs can induce an antimicrobial response by indirectly activating immune signaling 

[69] or acting as bacterial growth inhibitors or antimicrobials themselves [70, 71]. However, if 

they possess amidase activity, they also can dampen the immune response, by cleaving 

peptidoglycan into non-immunogenic fragments [72, 35]. 

 OalgPGRP1, OalgPGRP2, OalgPGRP4 and OalgPGRP5 contained the conserved residues needed 

to cleave peptidoglycan (Figure 4 [35, 73]). This suggests that they contribute to symbiont 

tolerance by scavenging immunogenic peptidoglycan fragments, which are released as a by-

product of bacterial growth. The sequence of OalgPGRP3 was incomplete, but contained four 

out of the five residues needed to cleave peptidoglycan (Figure 4). These enzymatically active 

PGRPs may also play a role in symbiont population control and host nutrition by participating in 

the digestion of symbionts [74].  

The affinities of PGRPs for different types of peptidoglycan stem peptides are determined by 

specific residues in the PGRP binding groove [75]. OalgPGRP1, OalgPGRP2, OalgPGRP4 and 

OalgPGRP5 possessed the residues that favor recognition of DAP-type peptidoglycan typical for 

gram negative bacteria [76], indicating that they could be used for the recognition of the worm's 

symbionts (which are all gram-negative) (Figure 4). The specificity of OalgPGRP3 could not be 

assigned because it had an insertion of two amino acids in the binding-groove region, and the 

OalgPGRP6 fragment did not contain the binding-relevant region.  

Lectins. We detected six different classes of lectins in the transcriptome and proteome (Table 1, 

Table 4). They included C-type lectins, R-type lectins, fucolectin, SUEL/rhamnose-binding lectins, 

galectins, a beta-1,3-glucan binding protein and fibrinogen-like proteins. Lectins are proteins 
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with widely differing molecular structures and physiological functions. They are unified by their 

ability to strongly, yet reversibly, bind specific carbohydrate residues on the surfaces of cells and 

proteins, without exhibiting enzymatic activity [77].  

Lectins are often associated with immune functions because of their molecular pattern 

recognition properties. For instance, they aid in microbe recognition and elimination through 

agglutination or direct antibacterial activity [78, 79], but, similar to PGRPs, are often also 

involved in modulating interactions between hosts and their beneficial symbionts. Lectins were, 

for example, shown to play major roles in symbiont acquisition and maintenance in sponges [80], 

corals [81, 82], clams [83], mice [84], and stilbonematid nematodes [85]. The sulfur-oxidizing 

symbionts of stilbonematine nematodes are very closely related to the primary symbionts of 

gutless oligochaetes [7, 86]. However, the stilbonematine lectins have no notable sequence 

similarity to the O. algarvensis lectins, as expected given the independent evolutionary histories 

of these two animal groups [86].  

The domain architectures of Olavius lectins and their potential functions in host-symbiont 

interaction are summarized in Table 4. C-type lectins were particularly diverse, and 33 different 

forms were found in the transcriptome. Some of these C-type lectins have significant sequence 

similarity to lectins implicated in host-microbe interactions (Supplementary Table 10), for 

example to CD209 antigen-like proteins, macrophage mannose receptors, and C-type lectin 

receptor B – all MAMP receptors and phagocytosis enhancers of bacteria in vertebrates [87, 88, 

89], and to immunolectin A, a microbe-inducible C-type lectin in Manduca sexta (tobacco 

hornworm) that is also involved in phagocytosis [90] .  

Another highly diverse group of lectins found in O. algarvensis were fibrinogen-related proteins 

(FREPs), which are almost exclusively involved in host-microbe interactions in invertebrates [91]. 

They were represented by 27 different unigenes in the transcriptome (Table 1, Table 4). For 

most of these, several isoforms with varying amino acid sequences were predicted, indicating 
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that they may form an even more diverse array of proteins, possibly allowing very high 

specificity in the recognition of microbes. 

Scavenger receptor cysteine rich proteins. In the transcriptomes we found a large group of 

sequences containing single or tandem scavenger receptor cysteine rich (SRCR) domains, often 

in association with other conserved domains, such as C-type lectin, trypsin, epidermal growth 

factor, low density lipoprotein (LDL) receptor, and immunoglobulin domains (Supplementary 

Figure 3). One of these proteins, which contained an additional universal stress protein A and 

four LDL receptor class B domains, was also identified in the proteome (Table 1).  

The SRCR domain is an ancient and highly conserved module often found in proteins of the 

innate immune system that are involved in the recognition of microbial patterns and 

phagocytosis of bacteria in vertebrates [92]. In invertebrates, SRCR proteins have been 

implicated in host-symbiont interaction [93] and MAMP recognition [94].   

Many SRCR sequences we identified had significant similarity to the MARCO scavenger receptor, 

DMBT1, CD163/M130, sea urchin scavenger receptors, and lamprey Pema-SRCR protein 

(Supplementary Table 11); all of these proteins are known or have been implicated to be 

involved in immune functions [92, 95]. Similar to the Olavius FREPs, the SRCR sequences 

identified in the transcriptome were represented by a considerable number of unigenes (FREP: 

27, SRCR: 25), but many more different isoforms were predicted by the assembly. We therefore 

expect a high variability in the final proteins, possibly supporting highly specific recognition of 

microbes in Olavius, as has been observed in other invertebrates [96].  

Toll-like receptors. We identified two Toll-like receptors (TLRs) consisting of the typical 

intracellular Toll/interleukin-1 receptor (TIR) homology domain and extracellular leucine- and 

cysteine-rich domains [97]. One of them was also detected in the proteome. Furthermore, we 

identified two sequences with only a TIR domain, one sequence with a TIR and transmembrane 

domain, and eight sequences containing leucine-rich repeats with high sequence similarity to 

TLRs from other animals and the variable lymphocyte receptors (VLRs) of agnate fish 
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(Supplementary Table 12).  VLRs are immune receptors that experience somatic recombination 

and convey a form of adaptive immunity in jawless vertebrates [98].  

Toll-like receptors (TLRs) are microbial pattern recognition receptors and intracellular signaling 

transducers that play a vital role in sensing and responding to microbiota in many animals [99]. 

They also play a role in many beneficial host-microbe symbioses [100, 101]. TLRs have long been 

thought to be absent from annelids [102, 103]. However, their presence and importance in host-

microbe interactions has recently been recognized in polychaetes, leeches and earthworms [104, 

105], where some were shown to be involved in the innate immune response against pathogens 

[106, 107] or were constitutively expressed in the gut [108]. 

We identified all the major components of the Toll signaling pathway in O. algarvensis, indicating 

that Toll signaling is active (Supplementary Table 13). We identified SARM (sterile alpha and TIR 

motif containing protein), an inhibitor of Toll signaling [109], that could aid in down-regulating 

the immune response against symbionts. Tollip, another inhibitor of Toll signaling [110], was also 

detected in the proteome, suggesting that these two inhibitors of Toll signaling may protect O. 

algarvensis against constant inflammation in response to its symbionts. 

3.3.2 Interactions between symbionts and host may be regulated by different immune 

effectors and modulators 

We detected several different types of antimicrobial proteins in the host transcriptome and 

proteome (Table 1), some of which were very abundant (Supplementary Table 8). The 

antimicrobials expressed in both transcriptome and proteome were lumbricin, an antimicrobial 

protein first discovered in earthworms [111], BPI (bactericidal permeability increasing protein), 

perforin/membrane attack complex-like proteins, insect defensin-like reeler proteins and 

cysteine-rich secretory proteins (Table 1). Antimicrobials combat infection by pathogenic 

microbes [112], but are also important in beneficial host-microbe interactions [84, 113], where 

they are used to modulate and control symbiont populations [114, 115]. In O. algarvensis they 
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might be used to prevent symbionts and pathogens from invading non-symbiotic tissues, or to 

regulate symbiont growth.  

Conclusions 
 

This study provides insights into the physiological and molecular mechanisms that allow Olavius 

algarvensis to live in a stable beneficial association with its microbial consortium. Our results 

indicate that these animals have undergone a number of evolutionary changes in adaptation to 

their symbiotic lifestyle, apart from a complete reduction of the excretory and digestive organs. 

Examples of such adaptations are host proteins involved in symbiont digestion and nutrient 

uptake, with likely relocalization of the expression sites of some of these enzymes, and 

unconventional proteins for gas exchange and storage.  

Since a mouth and anus are absent in gutless oligochaetes, foreign microbes can only invade 

these hosts if they have the ability to penetrate the egg integument, or the cuticle in a juvenile 

or adult worm. As a result, the complexity of the O. algarvensis microbiome is comparatively low 

and essentially consists of its symbiotic consortium. We found that O. algarvensis expresses a 

highly diverse array of pattern recognition receptors that enable it to recognize and respond to 

its microbiota. The high number of PAMP recognition proteins expressed in the transcriptome 

and proteome that clearly originated from different genes demonstrate the need for these hosts 

to diffentially sense and respond to both their symbiotic microbiota as well as environmental 

bacteria, although direct contact with the latter may be limited.  

This is also the first comprehensive transcriptomic and proteomic analysis of the innate immune 

system of a marine oligochaete. It shows how genes common to a wide array of invertebrates 

have evolved to enable the intricate communication and interactions that occur between 

animals and their symbiotic microbiota. The analyses described here lay the foundation for 
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future experimental studies of immune processes and physiological responses that are essential 

in the functioning of this symbiosis.  
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Tables 

Table 1: Overview of proposed host-symbiont interaction proteins 
For more extensive details see Supplementary Table 8. 

Functional category Protein family Transcripts a) Proteins b) 

Pattern recognition proteins 

peptidoglycan recognition proteins (PGRPs) 6 (16) 1 

C-type lectins 33 (119) 5 

R-type lectins 6 (18) 4 

SUEL/rhamnose-binding lectins 7 (22) 1 

galectins 3 (3) 1 

fucolectin 1 (23) 0 

fibrinogen-related proteins (FREPs) 27 (161) 1 

toll-like/variable lymphocyte receptor-like (TLR/VLR)  13 (52) 1 

scavenger receptor cysteine-rich (SRCR) domain proteins 25 (164) 1 

beta-1,3-glucan binding protein 1 (1) 1 

novel immunoglobulin I-set proteins 16 (17) 1 

novel immunoglobulin V-set proteins 9 (22) 1 

Antimicrobial proteins 
lumbricin 1 (1) 1 

invertebrate-type lysozyme 1 (1) 0 

bactericidal permeability increasing protein BPI 1 (3) 1 

insect defensin/reeler-like proteins 4 (8) 1 

cysteine-rich secretory proteins (CRSPs) 6 (28) 2 

membrane attack complex/perforin 2 (23) 0 

Other immune effectors 
ROS modulator 1 2 (3) 1 

alpha-2-macroglobulin 10 (24) 1 

kazal-type serpin 2 (8) 0 

kunitz-type serpin 1 (2) 0 

leukocyte elastase inhibitors 5 (25) 1 

phosphatidylethanolamine-binding protein PEBP 3 (5) 1 

Immune response regulators 

 Toll/interleukin-1 receptor (TIR) domain proteins 5 (9) 0 

 NF-kappa-B inhibitor Cactus 2 (6) 0 

 dorsal protein 2 (3) 1 

 evolutionarily conserved signaling intermediate in Toll (ECSIT) 1 (1) 0 

 Pelle protein 1 (1) 0 

 Relish protein 1 (6) 0 

 mitogen-activated protein kinase kinase kinase 7 (TAK1) 1 (1) 0 

 I-kappa-B-kinase alpha (IKK α) 1 (1) 0 

 I-kappa-B-kinase beta  (IKK β) 1 (5) 0 

 interleukin-1 receptor-associated kinase 1 (IRAK1) 1 (2) 0 

 mitogen-activated protein kinase kinase kinase 4 (MEKK4) 1 (1) 0 

sterile alpha and TIR motif-containing protein (SARM) 1 (3) 0 

Toll-interacting protein Tollip 1 (2) 1 
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(LPS-induced) tumor necrosis factor (TNF) 3 (7) 0 

 Tumor necrosis factor (TNF) 4 (6) 0 

tumor necrosis factor alpha-induced protein 3 (TNFAIP3) 1 (3) 0 

tumor necrosis factor receptor associated proteins (TRAF) 9 (16) 0 

IFN regulatory factor 8 (10) 0 

 IFN regulatory factor-binding protein 1 (1) 0 

IFN-induced GTPase 7 (23) 1 

macrophage migration inhibitory factor (MIF) 3 (24) 1 

ILN enhancer binding factor 2 2 (4) 1 

ILN-16 1 (1) 0 

Digestive enzymes 
carboxypeptidases 11 (22) 0 

cathepsins total 15 (28) 4 

cathepsin B 3 (12) 1 

cathepsin C 2 (4) 0 

cathepsin F 3 (3) 1 

cathepsin L 5 (6) 2 

cathepsin O 1 (2) 0 

cathepsin Z 1 (1) 0 

chymotrypsins 3 (17) 1 

pancreatic elastase 1 (1) 1 

alpha amylase 2 (3) 1 

lysosomal alpha glucosidase 1 (3) 1 

acid trehalase 2 (4) 1 

sucrase-isomaltase 1 (1) 0 

lysosomal acid lipase 1 (1) 0 

Respiration 

hemerythrin 2 (2) 2 

giant extracellular hemoglobin, globin chains 12 (16) 8 

 giant extracellular hemoglobin, linker chains 6 (18) 5 
sum  316 (1032) 60 

a) Number of transcripts defined as trinity components, which approximately correspond to genes; see [13]; in 
parentheses: number of contigs (isoforms or fragments)  
b) Number of unique proteins 
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Table 2: Difference in symbiont protein content in fresh worms 
compared to starved worms 
Significant differences between fresh and starved samples were determined with the Student's 
t-Test; nSpC, normalized spectral counts. For more extensive details see Supplementary Table 3. 
 

Symbionts fresh worms Symbionts starved worms 

average nSpC 3050.30 1869.77 

standard deviation 421.88 122.47 

# replicates 3 3 

p-value t-test 0.00963 
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Figures 

Figure 1: Schematic overview of hypothetical molecular host-symbiont 
interactions  
A) Light micrograph of an Olavius algarvensis worm. White box frames a region corresponding to the tissue section shown 
in B. Scale bar 5 mm. B) Light micrograph of a longitudinal section through O. algarvensis, tissue stained with toluidine blue. 
The red box frames a region corresponding to the TEM section shown in C. Scale bar 50 μm. C) Transmission electron 
micrograph of the symbiotic region, longitudinal section. Black box frames a region corresponding to the schematic 
representation shown in D. Red asterisks, symbiont cells; black arrow, cuticle; white arrow, epidermal cell extensions. Scale 
bar 5 μm. Images A, B, and C do not show the same worm specimen. D) Schematic overview of the main groups of 
expressed pattern recognition molecules, components of the Toll immune signaling pathway and proposed interactions 
between the host and its symbionts. Ig, immunoglobulin domain proteins; PGRP, peptidoglycan recognition proteins; SRCR 
scavenger receptor-like cysteine rich proteins; TLR, Toll-like receptors; FREP, fibrinogen-related proteins; AMPs, 
antimicrobial proteins. 
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Figure 2: Domain structures of peptidoglycan recognition proteins  
Structure of conserved functional domains in Olavius algarvensis peptidoglycan recognition proteins; OalgPGRP1: 
comp330541_c4; OalgPGRP2: comp250229_c0; OalgPGRP3: comp335695_c10; OalgPGRP4: comp314994_c0; OalgPGRP5: 
comp332570_c2; OalgPGRP6: comp1100768_c0.  
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Figure 4: Protein alignment of peptidoglycan recognition proteins 
Protein alignment of PGRP domain sequences from different model organisms and Olavius algarvensis; Dmel Drosophila 
melanogaster (GenBank accession numbers: PGRP-SA, Q9VYX7;  PGRP-LA, Q95T64; PGRP-LB, Q8INK6; PGRP-LC, Q9GNK5), 
Mmus Mus musculus (GenBank accession numbers: PGRP1, O88593; PGRP2, Q8VCS0; PGRP3, A1A547; PGRP4, Q0VB07), 
Hsap Homo sapiens (GenBank accession numbers: PGRP-S, O75594; PGRP-L, Q96PD5), Oalg Olavius algarvensis (OalgPGRP1, 
comp330541_c4; OalgPGRP2, comp250229_c0; OalgPGRP3, comp335695_c10; OalgPGRP4, comp314994_c0; OalgPGRP5, 
comp332570_c2; OalgPGRP6, comp1100768_c0). Conserved active-site residues that confer amidase activity are shown in 
red; mutation of at least one active-site residue (pink) removes amidase activity.  

-
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Supplementary Tables 

Supplementary Table 1: Summary of transcriptome sequencing  
Library A was prepared from whole worms freshly collected from the environment. Library B was 
prepared from whole worms after anoxic incubation (see Experimental Procedures for details). 

Sequencing statistic library A library B 

number of read pairs 167,402,116 6,041,419 

read length (bp)  100 100 

total bases  33,815,227,432 1,196,200,962 

number of read pairs after quality processing 159,551,509 5,745,537 

total bases filtered/trimmed reads 26,801,302,242 987,624,581 
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Supplementary Table 2: Summary of transcriptome assembly and 
protein database 

Transcriptome assembly  

number of contigs 173,602 

number of contigs >= 500 bp 60,369 

number of contigs >= 1000 bp 23,719 

N50 1236 

total size of assembly (bp) 100,372,073 

number of contigs with blast hits (blastx vs ncbi nr, e-value cut-off 1e-6) 40,860 

number of contigs with interpro hits (interproscan*) 137,596 

CDS prediction  

predicted non-redundant CDS (getorf) after 99% identity clustering 1,306,981 

predicted CDS (FrameDP) after 99% identity clustering 54,909 

Final non-redundant host sequences 1,359,455 
* Databases searched: ProDom [1], Prints [2], PIR [3], Pfam [4], Smart [5], TIGRFAM [6], PROSITE [7], HAMAP [8], 
SuperFamily [8], SignalP [9], TMHMM [10], Panther [11], Gene3D [12], Phobius [13], Coils [14] 
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Supplementary Table 3: Total protein of symbionts from fresh compared 
to starved whole worms 
Listed are nSpC (normalized spectral counts) of proteins assigned to each O. algarvensis 
symbiont. Proteins were assigned as described in [15] to each symbiont species based on the 
symbiont genomes as published in [16]. Each sample corresponds to one biological replicate 
sample of O. algarvensis worms as described in the Experimental Procedures section of this 
paper. Fresh worm samples were prepared from freshly collected, untreated material, while 
starved worm samples were prepared from worms that had been incubated for 8 days under 
oxic conditions without external energy sources that would allow the symbionts to fix carbon 
and grow. Significant differences between fresh and starved samples were determined with a 
Student's t-Test (significant values marked “*”). Rep, technical replicate; n.d., not determined.  
 

protein abundance whole worms 
fresh 

sample 1 nSpC sample 2 nSpC sample 3 nSpC 

rep. 1 rep. 2  rep. 1  rep. 2  rep. 1  rep. 2 average nSpC 

total symbiont 2682.47 2609.84 3016.81 n.d. 3487.93 n.d. 2949.26 

total OalgG1 775.99 784.99 714.70 n.d. 780.23 n.d. 763.98 

total OalgG3 107.02 109.42 110.08 n.d. 120.44 n.d. 111.74 

total OalgD1 36.20 33.61 27.08 n.d. 39.52 n.d. 34.10 

total OalgD4 12.19 18.24 42.50 n.d. 57.43 n.d. 32.59 

total unclassified symbionts 1750.65 1662.39 2122.45 n.d. 2490.31 n.d. 2006.45 

protein abundance whole worms 
starved 

sample 1 nSpC sample 2 nSpC sample 3 nSpC 

 rep 1  rep 2  rep 1  rep 2  rep 1  rep 2 average nSpC 

total symbiont 1737.92 1724.54 1859.96 1968.93 1790.71 2136.52 1869.76 

total OalgG1 385.41 391.17 446.44 474.63 437.98 492.11 437.96 

total OalgG3 60.82 73.21 84.22 101.28 80.19 78.99 79.79 

total OalgD1 16.28 39.66 36.06 23.84 43.64 65.27 37.46 

total OalgD4 28.06 47.39 45.46 53.41 34.83 35.26 40.74 

total unclassified symbionts 1247.35 1172.44 1247.78 1315.77 1193.79 1464.89 1273.67 

protein abundance whole worms 
average nSpC fresh worms average nSpC starved worms 

sample 1 sample 2 sample 3 sample 1 sample 2 sample 3 p-value t-test 

total symbiont 2646.16 3016.81 3487.93 1731.23 1914.45 1963.62 0.00963* 

total OalgG1 780.49 714.70 780.23 388.29 460.54 465.05 0.00064* 

total OalgG3 108.22 110.08 120.44 67.02 92.75 79.59 0.01655* 

total OalgD1 34.91 27.08 39.52 27.97 29.95 54.46 0.71551* 

total OalgD4 15.22 42.50 57.43 37.73 49.44 35.05 0.86642* 

total unclassified symbionts 1706.52 2122.45 2490.31 1209.90 1281.78 1329.34 0.02205* 
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Supplementary Table 14: Subcellular localization evidence of host digestive 
proteins 
Table is too large; refer to refer to supplementary file “Supplementary_Table14.xlsx”  

Supplementary Figure Legends 

Supplementary Figure 1: Transcriptome annotation statistics 
Blast2GO annotation statistics of assembled transcripts; with interproscan: sequences with at least 
one hit to any of the following databases: ProDom [1], Prints [2], PIR [3], Pfam [4], Smart [5], 
TIGRFAM [6], PROSITE [7], HAMAP [69], SuperFamily [8], SignalP [9], TMHMM [10], Panther [11], 
Gene3D [12], Phobius [13], Coils [14]; with blast hits: sequences with at least one significant blastx hit 
to ncbi nr database (e-value cut-off: 1e-6), but no GO mapping or annotation; with mapping: 
sequences with GO mapping, but no annotation; with annotation: sequences with blast hits and GO 
mapping, automatically annotated according to blast2go annotation rules [70]. 

 

Supplementary Figure 2: Hydrophobicity cluster analysis plots of annelid 
hemoglobin chains 
Two-dimensional hydrophobicity cluster analysis (HCA) plots of selected annelid and Olavius 
algarvensis hemoglobin chains, generated with drawhca [71]. Arenicola marina (GenBank accession 
numbers: A2c, CAJ32741; B1, CAJ32742; B2, CAI56309), Ridgeia piscesae (GenBank accession 
numbers: A1, ABD72632; A2, ABD72633; B1a, ABD72634; B2, AAP04527), Riftia pachyptila (GenBank 
accession numbers: A1, ABW24412; A2, CAD29155; B1a, CAD29156; B2, CAD29159), Lamellibrachia 
satsuma (GenBank accession numbers: A1, BAN58230; A2, BAN58231; B1, BAN58232; B2, 
BAN58233), Lamellibrachia sp. XB-2003 (GenBank accession numbers: A1, AAP40327; A2, AAP04528; 
B1, AAP40328; B2, AAP04529), Oasisia alvinae (GenBank accession numbers: A2, AAP04531; B2, 
AAP40329), Tevnia jerichonana (GenBank accession number: A2, AAP04530), Oligobrachia mashikoi 
(GenBank accession numbers: A1, Q7M419; A2, Q7M413; B1, Q5KSB7; B2, Q7M418), Sabella 
spallanzanii (GenBank accession numbers: A2, CAC37412; B2a, CAC37410), Tylorrhynchus 
heterochaetus (GenBank accession numbers: A1, P02219; A2, P09966; B2a, P13578), Lumbricus 
terrestris (GenBank accession numbers: A1, P08924; A2, P02218; B1, P11069; B2, P13579), Lumbricus 
rubellus (GenBank accession numbers: A1a, DR009556; A2, BF422675; B1, CAA09958; B2, BF422540), 
Olavius algarvensis, sequences obtained in this study, accession numbers in figure.  

 

Supplementary Figure 3: Domain structures of proteins with scavenger 
domains 
Structure of conserved functional domains in Olavius algarvensis scavenger receptor cysteine-rich 
(SRCR) domain containing proteins; Question marks show uncertain sequential arrangement of 
domains, due to fragmented transcript assembly.  
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Supplementary Figures 

Supplementary Figure 1: Transcriptome annotation statistics 
Blast2GO annotation statistics of assembled transcripts; with interproscan: sequences with at least 
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to ncbi nr database (e-value cut-off: 1e-6), but no GO mapping or annotation; with mapping: 
sequences with GO mapping, but no annotation; with annotation: sequences with blast hits and GO 
mapping, automatically annotated according to blast2go annotation rules [70]. 
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Supplementary Figure 3: Domain structures of proteins with scavenger 
domains 
Structure of conserved functional domains in Olavius algarvensis scavenger receptor cysteine-rich (SRCR) domain 
containing proteins; Question marks show uncertain sequential arrangement of domains, due to fragmented transcript 
assembly.  
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Chapter 5: General discussion and perspectives 

This thesis contributes to current research in the fields of animal symbiosis, evolution, ecology, 

and immunology in several ways. Using the model gutless oligochaete species 

Olavius algarvensis, I was able to i) provide new insight into the recent evolutionary 

relationships between host and symbionts on a population level scale, ii) show that, although 

the symbionts are obligatory for and highly integrated with the host, and with each other, their 

transmission fidelity and host specificity can range from very high to low, iii) show that the 

diversity and flexibility of mutualistic symbionts within the same host species is much higher 

than previously anticipated, iv) provide the first genomic and functional insights into the 

physiology of the spirochaetal symbiont and its role within the symbiosis, v) provide the first 

analysis of the host’s immune system and the molecular mechanisms that allow the continued 

existence of the symbiosis, and vi) discovered several ways of how the host has physiologically 

adapted to its symbiotic lifestyle.  

The major findings of this thesis and their specific discussions are presented as individual 

manuscripts in chapters 2 (evolution, population genetics, transmission and diversity), 3 

(spirochaete symbiont genomics and function), and 4 (host physiological adaptations and 

immunology). In the following, I will discuss questions that were left open for further exploration 

and research and will provide some preliminary data and suggestions of how to tackle these 

questions in the future. 

 

5.1 Do O. algarvensis symbionts promote host evolution and diversification? 

One of the most interesting current questions in evolution and symbiosis research is to what 

extent mutualistic microbial symbionts are able to contribute to host diversification, and 
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ultimately, host speciation. In chapter 2, I was able to show that, likely through strict maternal 

vertical transmission, OalgG1-A and OalgG1-B were sent on divergent evolutionary paths. Not 

only did they show genome sequence divergence on the SNP level, but also a divergence in the 

gene content of their genomes.  

While the host showed a clear separation into different haplotypes on the mitochondrial 

genome level, it is at this point unclear if gene flow between these haplotypes is reduced or 

prevented, or not. Since the worms cannot be cultivated or brought to mating and egg laying in a 

controlled manner, judging whether or not reproductive barriers exist, and how permeable they 

are for occasional hydbrids is impossible without employing culture-independent sequencing 

methods.  

Diversification within the nuclear genome of the host that reflects mitochondrial haplotype 

diversification could be strong evidence that the haplotypes are not interbreeding, whatever the 

actual isolation mechanisms may be. With the sequence data made available during this thesis, 

tracing host divergence on the nuclear gene level was not possible due to i) the lack of a host 

reference genome, which complicates transcriptomics based approaches even further (e.g. 

messy de novo assemblies, with many fragments, and alternatively spliced transcripts that 

cannot be resolved), ii) the lack of reference transcriptomes from single worms. Sequence data 

from single specimens would i) ensure that all sequences are really derived from the species 

O. algarvensis, and don’t contain contaminating sequences from co-occuring species, and ii) 

would allow discerning individual sequence variation from population sequence variation. 

Towards the very end of my PhD I obtained twelve metagenomes and metatranscriptomes from 

single O. algarvensis worms, six of each haplotype from Sant’ Andrea (A and B, the 

metagenomes are already used in the research of chapter 2). These new transcriptomes would 

be ideal material to construct a high quality database of host marker sequences (in this case: 

from CDS (coding sequences) and transcribed microsatellites) for phylogenetic SNP analyses, 

which would allow the investigation of hundreds of loci at the same time and that could uncover 



Chapter 5 

 
 

- 219 - 
 

possible divergent sequence evolution in the nuclear genome of the host [353]. However, care 

must be taken to avoid various pitfalls and biases in selecting these sequences [354, 355, 356, 

357]. Because sequences were obtained from individual specimens, genetic distances between 

individuals could be calculated and clustered without a priory assumption about population 

structure, similar to the SNP analysis of mitochondrial and symbiont genomes presented in this 

thesis. Unfortunatley this type of analysis is mostly restricted to coding sequences, which might 

be under positive or purifying selection pressures and might not evolve neutrally. Additional 

fixed and frozen O. algarvensis specimens are available for sequencing of further specimens and 

ideally, the analysis would also include O. algarvensis specimens from near-by locations in order 

to avoid false assumptions about population boundaries. However, since the occurrence of 

O. algarvensis is very patchy, and only two confirmed collection sites are known, this might 

prove to be difficult to achieve in reality. However, the definition of suitable markers from 

transcriptomic data would already allow the design of PCR-based SNP genotyping assays and the 

assessment of local population structure and divergence on the nuclear genome level using 

hundreds of individual worms.  

 

5.2 Why do several bacterial clades seem prone to form symbioses with gutless oligochaetes? 

Gutless oligochaetes are a very species-rich group of animals, and each species of gutless 

oligochaete possesses their own specific set of symbionts that is not shared with any other 

species. However, in most cases, the symbionts do have very close relatives within the same 

clade that also form symbiotic relationships with other gutless oligochaete species. Examples of 

such clades include “Gamma1” (i.e. Candidatus Thiosymbion), “Gamma3”, “Delta1”, “Alpha1”, 

etc (see chapter 1, Figure 11, p. 51 and Figure 12, p. 53).  

Host species that share symbionts from a certain clade are often not directly related, meaning 

that these symbionts were most likely not passed down from a common host ancestor, but 
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acquired anew, either from the environment, or from a co-occuring, but unrelated host. While 

the Gamma1/Candidatus Thiosymbion clade exclusively contains symbionts of either nematodes 

(Stilbonematinae/Astomonematinae) or gutless oligochaetes, and is relatively far diverged from 

its last common ancestor with non-host associated species, most other gutless oligochaete 

symbiont clades appear to be much less derived, and often contain free-living species among 

symbiont species. This also points to independent origins of gutless oligochaete symbioses with 

different members of the same bacterial clade. This also means that, from the vast diversity of 

free-living bacteria that could potentially form mutualistic symbioses with the gutless 

oligochaetes, only a few select clades actually do, and they did it repeatedly over the course of 

evolutionary time.  

Great examples of this phenomenom are the model species Olavius algarvensis and the co-

occuring species Olavius ilvae from Elba: these two host species share symbionts of the Gamma1, 

Gamma3, Delta1 and Delta3 clades; of course, each with its own host-exclusive version of each 

symbiont (see chapter 1, Figure 11, p. 51 and Figure 12, p. 53). The two hosts do not share a 

direct common ancestor, and neither do their Gamma1, Gamma3, Delta1, and Delta3 symbionts. 

As suggested by their 16S rRNA gene phylogenies, these symbionts were picked up by the two 

hosts independently, either from an unrelated host in the case of the Gamma1 symbiont, or 

from the environment in the case of Gamma3 and Delta1 (chapter 1, Figure 12, p. 53).  

This raises the question of why there seem to be certain clades of bacteria that are more prone 

to form beneficial associations with gutless oligochaetes than others. Since the types of 

symbionts associated with a particular host species do not necessarily reflect host phylogeny, it 

seems to be due to factors other than the host genotype. This is expecially interesting since most 

proteobacterial mutualisms are claimed to have evolved from parasitic ancesters [358], which is 

clearly not the case in the gutless oligochaete symbionts, which are all derived from free-living 

environmental bacteria.  
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One reason for this could simply be that the clades of free-living bacteria, which also contain 

gutless oligochaete symbionts, are generally very widespread, dominant marine sediment 

bacteria. In other words, they are more prone to form symbiotic associations, because they are 

readily available in the habitat oft he worms. This hypothesis is supported by 16S clone libraries 

that were constructed using DNA extracted from Elba sediment, collected from the same habitat 

where the worms occur. These clone libraries yielded many sequences from typical gutless 

oligochaete clades (this chapter, Figure 1). While none of the recovered sequences were 

identical to symbiont phylotypes, many were very closely related and part of the same bacterial 

clade (with the exception of the Gamma1 symbiont, for which the existence of a free-living 

counterpart remains to conclusively demonstrated, [359, 130]).  

However, there are other reasonably abundant clades of free-living sulfate-reducers in the 

sediment as well that could theoretically take the place of the established symbionts (see 

Figure 1). The same 16S rRNA clone libraries even contained another group of 

Gammaproteobacteria that forms symbiotic associations with the clam Thyasira. Yet, the 

secondary SOX symbionts of both O. algarvensis and O. ilvae are derived from the BD7-8 marine 

group instead.  

Comparing the genetic makeup of gutless oligochaete symbionts and their closely-related free-

living counterparts could help to better understand what makes certain bacterial clades more 

likely to form associations with these animals. The fact that gutless oligochaetes form 

associations with such a large diversity of bacterial clades, provides the unique opportunity to 

study the differences (and similarities) of symbionts and their close free-living relatives in several 

bacterial groups that are not directly related, but associated with the same host group. If general 

patterns or rules for sucessful symbiosis establishment do exist, they should become apparent 

by studying this host group.  



Chapter 5 

 
 

- 222 - 
 

Fairly new technical advances, like single-cell sorting, next generation metagenomic sequencing 

and improved assembly and binning algorithms make such comparisons feasible. Single cells can 

be obtained from sediment samples, amplified by MDA (multi displacement amplification) and 

sequenced to produce draft genomes of closely related, free-living relatives of gutless 

oligochaete symbionts. This approach has already been successfully employed to obtain draft 

genomes of marine Sva0081-clade bacteria from the North Sea and East Australia (Marc 

Mußmann, personal communication). The Sva0081-clade includes all gutless oligochaete Delta1 

symbionts and the 16S sequences of these organisms are 96-99% identical to the 16S sequences 

of the gutless oligochaete Delta1 symbionts. 

I propose that a similar approach should be employed to obtain draft genomes of other bacterial 

clades that contain gutless oligochaete symbionts. During my PhD I was able to obtain sediment 

samples for single cell sorting from various sites that harbor gutless oligochaetes, including Elba, 

Bermuda, Egypt and Hawaii, that could be used for this approach. Metagenomic sequencing 

data of a multitude of gutless oligochaete species from all over the world has recently been 

obtained through Illumina sequencing. From these, draft genomes of each symbiont could be 

assembled and binned with similar methods as employed in this thesis. Taken together, these 

samples and data not only could be used to search for genetic patterns that distinguish 

symbionts from their free-living relatives, or to find clues to help explain why these clades are 

prone to form symbioses with gutless oligochaetes, but also give new functional insights into the 

genomes of important free-living, but so far uncultured and unsequenced bacteria.  
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5.3 Does the spirochaetal symbiont contribute an important function to the symbiosis? 

This thesis provides the first insight into the possible functions of the spirochaete symbiont 

within the O. algarvensis symbiosis, based on its draft genome. However, without information 

on gene expression, it is difficult to infer which metabolic pathways and other functions are 

actually active and play an important role in the symbiosis, since the genome itself can only give 

clues about the functional potential of the organism.  

Since this symbiont, like all other gutless oligochaete symbionts, remains to be successfully 

cultured, one of the simplest ways right now to obtain gene expression information is via 

proteomics and transcriptomics. Using worms fixed immediately after sampling, both methods 

would allow investigating which genes are active under in situ conditions, while with short-term 

incubations, one could specifically investigate global gene expression patterns under different 

controlled laboratory conditions.  

Preliminary analysis, using the gene expression data generated in this thesis, seems to support 

the hypothesis that the spirochaete symbiont is using external sugar sources, such as sucrose, 

from pore water, since the pathways for sucrose degradation, and fermentation to acetate 

appear to be more expressed than others (data not shown). Furthermore, several predicted 

sugar ABC transporters are among the top – ranking genes that have a functional annotation 

(data not shown). However, this data requires further analysis in order draw any robust 

conclusions. Preferably, one would set up suitable incubation experiments with whole live 

worms that are designed with the goal to track particular pathways (e.g. applying sucrose or 

inositol externally should result in a significant increase in expression levels of the required 

transporters and pathways).  
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5.4 How do physiological adaptations of the host connect to actual ecology? 

The in-depth analysis of O. algarvensis proteomes revealed the expression of some unusual and 

unexpected proteins, including hemoglobin which, based on conserved sequence-patterns, 

should be able to bind sulfide, and the extremely abundant expression of hemerythrin, a 

respiratory protein insensitive to carbon monoxide. Both proteins appear to be adaptations to 

living in symbiosis with sulfide-producing and carbon monoxide oxidizing symbionts, as well as 

adaptations to experiencing extended periods of anoxia. In order to confirm the binding 

properties of these proteins, and to relate these findings to the ecology of the worms, further 

study of the actual proteins beyond their amino acid sequences is necessary. For example, the 

actual sulfide-binding and oxygen-binding properties of the O. algarvensis hemoglobin should be 

determined experimentally, in order to understand their affinities and binding behavior under 

varying sulfide or oxygen partial pressures, and in order to determine to what degree this 

hemoglobin can mitigate negative effects of endogenous sulfide. In the case of hemerythrin, its 

oxygen binding affinity and binding capacity need to be determined in order to estimate how 

much oxygen can be stored, and how much aerobic respiration could be supported, while the 

worms stay in the anoxic layers of the sediment. Expression localization of these proteins, for 

example using whole mount or thin-section in situ mRNA hybridizations should further help to 

understand the specific role that they play in the physiology and ecology of the host.  

 

5.5 How does the immune system interact with each symbiont? 

This thesis has established a large list of genes that are part of the host’s innate immune system 

and therefore likely to be involved in molecular host-symbiont interactions in some way. While 

general putative functions can be inferred from the sequences of these genes, their specific 

function within the symbiosis remains to be determined for all of them. Some of the proteins 
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identified in chapter 4 are bound to play crucial roles in establishing and maintaining the 

symbiosis, and should be further investigated and characterized. However, the host expressed so 

many immune related genes, that it is impossible to characterize them all within a reasonable 

timeframe, especially with neither the host, nor the symbionts so far cultivated in the laboratory.  

Nonetheless, several experiments are possible that would advance research in this area. For 

example, different life-stages of the host (mature worms, freshly layn eggs, different egg stages 

and hatched juveniles) could be screened for genes of the immune system that are only active or 

particularly active during certain phases of the host life cycle. The differential expression of such 

genes would indicate that they are especially important during a particular life stage of the host, 

and would give clues to which proteins are e.g. involved in the intitial recognition of the 

symbionts and the establishment of the symbiosis in the developing egg.  

Another approach would be to localize proteins of particular interest to certain regions within 

the host (again, a possibility would be using in situ mRNA hybridizations). Genes that are likely 

involved in the interaction with symbionts should be mostly expressed in the epidermal tissue, 

since it is the only tissue in direct contact with the symbionts.  

Futher experiments, like incubations under different conditions, e.g. anoxic conditions vs. oxic 

conditions, with subsequent transcriptome sequencing or proteomic identification could give 

indications towards which genes might be involved in regulating the activity of individual 

symbionts or symbiont groups (e.g. aerobes vs. anaerobes) under different physiological 

conditions. However, for any analysis that goes beyond descriptive, comparative and correlative 

research, specific experimental manipulations (e.g. controlled infection with other symbiont 

strains, genetically manipulated strains, or pathogenic strains) and genetic and physiologcical 

homogeneity between individual worms should be established first.  
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Of course, “host-microbe interaction” implies communication and response not only from the 

host side, but also from the symbionts. Futher analysis of the available symbiont genomes and 

the genes they express should therefore also incorporate the investigation of genes that might 

be important factors in establishing and maintaining the symbiosis, as well.  
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